
Webinar:
Digital Twins: The Next Generation in Stream-

Processing and Real-Time Analytics

Dr. William Bain, Founder and CEO
(wbain@scaleoutsoftware.com)

December 11, 2018

Agenda

• About ScaleOut Software

• Our core technologies: software for in-memory data grids and computing

• Challenges for stream-processing

• A solution: the digital twin model

• Running digital twins on an IMDG
• Advantages

• Comparison to traditional approaches

• IoT example with C# code using ScaleOut Digital Twin Builder™

• IoT example with Java code incorporating data-parallel feedback

© ScaleOut Software, Inc. 2

• Develops and markets In-Memory Data Grids, software middleware for:

• Scaling application performance and

• Providing operational intelligence using

• In-memory data storage and computing

• Dr. William Bain, Founder & CEO

• Career focused on parallel computing

• Bell Labs, Intel, Microsoft

• Eleven years in the market:

• 450+ customers, 10,000+ servers

• Sample customers:

About ScaleOut Software

© ScaleOut Software, Inc.

http://about-monster.com/
http://en.wikipedia.org/wiki/Image:HSN.png

ScaleOut Software’s Products

• ScaleOut StateServer® & ScaleOut GeoServer®

• In-Memory Data Grid (IMDG) for Windows and Linux

• Application scaling with strong consistency & high av

• APIs in Java, C#, C/C++

• Deployable on-premises and in public clouds (Azure,
AWS)

• Global data replication and remote data access

• Released in 2005; now in 5th major version

• ScaleOut StreamServer™ & ScaleOut Digital Twin
Builder™
• Stateful stream-processing with digital twins

• Simplified development for digital twins in Java, C#

• Support for ReactiveX APIs, Kafka, and Azure IoT

• Integrated IMDG and in-memory compute engine

• Real-time, data-parallel analytics

© ScaleOut Software, Inc. 4

ScaleOut StateServer In-Memory Data Grid

Grid

Service

Grid

Service

Grid

Service

Grid

Service

Core Technology: IMDG + IMC

• In-Memory Data Grid (IMDG): cluster-hosted software which provides
fast, distributed in-memory storage for live data:
• Uses object-oriented, key/value storage model

• Location-transparent access to data by multiple clients

• Create/read/update/delete APIs for Java/C#/C++

• Parallel query by object properties

• In-Memory Computing: integrated software-based
compute engine for streaming & data-parallel ops
• Runs o-o methods on live data with low latency

• Avoids network bottlenecks by computing in the IMDG.

• Both: Transparent scalability and high availability:
• Automatic load-balancing across commodity servers

• Automatic data replication, failure detection, and
recovery

© ScaleOut Software, Inc. 5

Logical view

Physical view

IMDG Storage Model

How an IMDG Can Integrate Computation

• Each grid host runs a worker process
which executes application-defined
methods on stored objects.
• The set of worker processes is

called an invocation grid (IG).

• IG usually runs language-specific
runtimes (JVM, .NET).

• IMDG can ship user code to the IG
workers.

• Key advantages for IGs:
• Follows object-oriented model.

• Avoids network bottlenecks by
moving computing to the data.

• Leverages IMDG’s cores & servers.

Invocation Grid

6

In-Memory Data Grid

© ScaleOut Software, Inc.

IMDG Runs Handlers for Stream-Processing

Event handlers run independently for
each incoming event:

• IMDG directs event to a specific object
(e.g., using ReactiveX) for low latency.

• IMDG executes multiple event handlers
in parallel for high throughput.

7

Object

© ScaleOut Software, Inc.

IMDG Also Runs Data-Parallel Computations

Method execution implements a parallel
operation on a stored object collection:

• Client runs a single method on all
objects in a collection.

• Execution runs in parallel across the
grid.

• Results are merged and returned to
the client.

• Runs with lower
latency than
batch jobs.

8

Object

© ScaleOut Software, Inc.

A Basic Data-Parallel Execution Model

A fundamental model from
parallel supercomputing:

• Run one method (“eval”) in
parallel across many data
objects.

• Optionally merge the results.
• Binary combining is a special

case, but…

• It runs in logN time to enable
scalable speedup

9© ScaleOut Software, Inc.

objects stored in the IMDG:

stored in the IMDG

Example: MapReduce Computation

• Implements “group-by”
computations on live data.

• Example: “Determine average RPM
for all wind turbines by region (NE,
NW, SE, SW).”

• Runs in two data-parallel phases
(map, reduce):
• Map phase extracts, repartitions,

and optionally combines source
data.

• Reduce phase analyzes each data
partition in parallel.

• Returns results for each partition.

partitions

objects stored in the IMDG:

10© ScaleOut Software, Inc.

Goals for Stream-Processing

• Goals:
• Process incoming data streams from many (1000s) of sources.

• Analyze events for patterns of interest.

• Provide timely (real-time) feedback and alerts.

• Provide data-parallel analytics for aggregate
statistics and feedback.

• Many applications:
• Internet of Things (IoT)

• Medical monitoring

• Logistics

• Financial trading systems

• Ecommerce recommendations

• Challenge: How can we track the dynamic state
of data sources to enhance real-time analysis?

11

Event Sources

© ScaleOut Software, Inc.

Example: Ecommerce Recommendations

1000s of online shoppers:

• Each shopper generates a clickstream of
products searched.

• Stream-processing system must:
• Correlate clicks for each shopper.

• Maintain a history of clicks during a shopping
session.

• Analyze clicks to create new recommendations
within 100 msec.

• To be effective, analysis should:
• Take into account the shopper’s preferences and

demographics.

• Use aggregate feedback on collaborative
shopping behavior.

12© ScaleOut Software, Inc.

Real-Time Recommendations

• Requires stateful stream-processing to analyze each click and respond in <100ms:
• Can accept input with each event on shopper’s preferences and track these preferences.

• Can analyze aggregate behavior and provide feedback on best-selling products.

13© ScaleOut Software, Inc.

Real-Time, Aggregate Metrics

• Dynamically aggregates statistics
for all shoppers:
• Track real-time shopping behavior.

• Chart key purchasing trends.

• Enable merchandizer to create
promotions dynamically.

• Combined statistics can be shared
with all shoppers:
• Allows shoppers to obtain

collaborative feedback.

• Examples include most viewed
and best selling products.

14© ScaleOut Software, Inc.

Challenges for Stream-Processing

• Basic stream-processing architecture is a pipeline (or acyclic graph):

• Challenges unmet by traditional architectures:
• How efficiently correlate events from each data source?

• How combine events with relevant state information to create the necessary context for analysis?

• How embed application-specific analysis algorithms in the pipeline?

• How generate feedback/alerts with low latency?

• How perform data-parallel analytics to determine aggregate trends?

15© ScaleOut Software, Inc.

Adding Context to Stream-Processing

• Stateful stream-processing platforms add “unmanaged” data storage to the pipeline:
• Pipeline stages perform transformations in a sequence of stages from data sources to sinks.

• Data storage (distributed cache, database) is accessed from the pipeline by application code in an unspecified
manner.

• Examples: Apama (CEP), Apache Flink, Storm

• Problems:
• Data stores for managing state information

are not integrated into the pipeline.

• This adds complexity and creates
a network bottleneck.

• Does not address need for
data-parallel analytics.

16

How can we efficiently combine stream-processing with state (context) to
enable real-time analytics, simplify design, and maximize performance?

© ScaleOut Software, Inc.

A Solution: the “Digital Twin” Model

• Term coined by Dr. Michael Grieves (U. Michigan) in 2002 for use in
product life cycle management

• Popularized in Gartner’s “Top 10 Strategic Technology Trends for 2017:
Digital Twins” for use with IoT

• Definition: a digital representation of a physical entity; an encapsulated
software object that comprises (per Gartner):
• A model (e.g., composition, structure, metadata for an IoT sensor)

• Data (e.g., sensor data, entity description)

• Unique identity (e.g., sensor identifier)

• Monitoring (e.g., alerts)

• Significance: focuses on modeling data sources
• A basis for correlating and analyzing streaming data

• A context for deep introspection and interaction

17© ScaleOut Software, Inc.

Many Uses of the Term “Digital Twin”

Although created by Michael Grieves for product life cycle management (PLM)…

• The term “digital twin” has several interpretations, for example:
• Digital twin as used in PLM and product-line engineering (from Marc Lind, SVP Aras Corp.)

• A virtual version of a physical entity

• Adds context to interpret the time-series data streaming back from the field

• Azure digital twin: spatial graph of spaces, devices, and people for modeling relationships in context

• Azure IoT device twin: JSON document that stores per-device state information (metadata, conditions)

• AWS device shadow: cloud-based repository for per-device state information with pub/sub messaging

• ScaleOut’s use of digital twin:
• Object-oriented model of a data source (or higher-level entity) for use in real-time streaming analytics

• Benefit: enables real-time
streaming analytics which is:

• Fast and scalable

• Easy to use

18© ScaleOut Software, Inc.

Examples of Digital Twins in IoT

19

Digital TwinsLive System – Physical Objects

(Autonomous)
Vehicles

Wind turbines
and wind farms

Manufacturing
floors and
equipment

Telemetry streams

Immediate feedback

Vehicle subsystems for safety monitoring & predictive maintenance

Networks of machine
tooling for real-time
interactive view and
predictive maintenance

Collections of wind
turbine components
for remote
operations and
predictive
maintenance

© ScaleOut Software, Inc.

Creating Digital Twins with OOP

• A digital twin model represents a type of data
source (e.g., a wind turbine).

• Each digital twin instance represents a specific
physical data source (e.g., wind turbine 73).

• Digital twin typically comprises:
• An event collection

• State information about the data source

• Logic for managing events & commands,
updating & analyzing state, generating alerts

• Object oriented model:
• Holds source’s dynamic state information.

• Encapsulates domain-specific logic (e.g., ML,
rules engine, etc.).

• Runs code where the data lives (avoids data
motion) for fast response times.

• Enables data-parallel analysis.

20

Offline State Data-Parallel
Analysis

© ScaleOut Software, Inc.

Using an IMDG to Host Digital Twins

The IMDG:

• Can host thousands of digital twins as objects.

• Can post incoming events to their respective
digital twin objects.

• Can run the twin’s event handler method with low
latency:
• Event handler uses and updates in-memory state.

• Event handler can manage an event collection and
use time windows for its analysis.

• Event handler can use/update off-line state.

• Event handler optionally generates alerts and
feedback to its digital twin.

• Also can run data-parallel methods to analyze all
digital twins in real-time.
• Collects and reports periodic aggregate statistics.

• Results can be used for both alerting and feedback.

21

Data-parallel analysis

© ScaleOut Software, Inc.

Why Use an IMDG to Host Digital Twins?

• Object-oriented data storage:
• Offers a natural model for hosting digital twins.

• Cleanly separates domain logic from data-parallel
orchestration.

• Provides rich context for correlating and
processing streaming data.

• Allows easy addition of specialized analysis
algorithms (rules, ML, etc.)

• Integrates streaming and data-parallel processing.

• High performance:
• Avoids data motion and associated network

bottlenecks.

• Fast and scales to handle large workloads.

• Integrated high availability:
• Uses data replication designed for live systems.

• Can ensure that computation is high av.

22© ScaleOut Software, Inc.

Comparison to Traditional Architecture

An IMDG:

• Avoids the need to correlate events from
each data source in the stream
processing pipeline:
• Reduces application complexity.

• Eliminates network bottlenecks.

• Refactors processing steps to perform
them in one location:
• Allows application encapsulation.

• Avoids data motion between pipeline
stages.

• Provides a basis for transparent scaling:
• Leverages the grid’s load-balancing of

digital twin objects across the IMDG.

• Enables data-parallel analytics.

23

Stateless Stream-Oriented Model:

Digital Twin Model:

© ScaleOut Software, Inc.

Important to Avoid Network Bottlenecks

• Hosting digital twins in an IMDG avoids network bottlenecks associated with
accessing a database or networked cache in a stream-processing pipeline.
• External data storage requires network access to obtain an event’s context.

• Network bottleneck prevents scalable throughput.

24© ScaleOut Software, Inc.

bottleneck

Analysis flow

Moves Streaming Analytics into Real Time

• Lambda architecture separates stream-
processing (“speed layer”) from data-parallel
analytics (“batch layer”).

• Performance limitations keep streaming analytics
in the batch layer.

• This prevents real-time responses with deep
introspection.

• ScaleOut’s digital twin model running on
ScaleOut StreamServer’s IMDG+IMC enables:

• Deep introspection in the speed layer

• Real-time feedback
from event analytics

• Data-parallel analytics to
detect aggregate trends
in real time

© ScaleOut Software, Inc. 25

Lambda Architecture

Example: Microsoft Azure IoT Services ArchitectureScaleOut StreamServer

Many Applications for Digital Twins

A digital twin correlates incoming events with context using domain-specific algorithms to generate alerts:

26

Application Context Events Logic Alerts

IoT devices Device status & history Device telemetry Analyze to predict
maintenance.

Maintenance
requests

Medical
monitoring

Patient history &
medications

Heart-rate, blood-
pressure, etc.

Evaluate measurements
over time windows with
rules engine.

Alerts to patient
& physician

Cable TV Viewer preferences &
history, set-top box
status

Channel change
events, telemetry

Cleanse & map channel
events for reco. engine;
predict box failure.

Viewer recom-
mendations,
repair alerts

Ecommerce Shopper preferences &
buying history

Clickstream events
from web site

Use ML to make product
recommendations.

Product list for
web site

Fraud
detection

Customer status &
history

Transactions Analyze patterns to
identify probable fraud.

Alerts to
customer & bank

© ScaleOut Software, Inc.

Example: Tracking a Fleet of Vehicles

• Goal: Track telemetry from a fleet of cars or trucks.
• Events indicate speed, position, and

other parameters.

• Digital twin object stores information
about vehicle, driver, and destination.

• Event handler alerts on exceptional
conditions (speeding, lost vehicle).

• Periodic data-parallel analytics
determines aggregate fleet
performance:
• Computes overall fuel efficiency, driver

performance, vehicle availability, etc.

• Can provide feedback to drivers to optimize
operations.

27© ScaleOut Software, Inc.

OOP Techniques Simplify Digital Twins

• Digital twin objects can use inheritance to
create specialized behaviors:

28

• Instances of objects can be organized in a
hierarchy:

Base Class

IS A

Sub-Class

© ScaleOut Software, Inc.

Using Digital Twins in a Hierarchy

Tracks complex systems as hierarchy of
digital twin objects:

• Leaf nodes receive telemetry from
physical endpoints.

• Higher level nodes represent
subsystems:
• Receive telemetry from lower-level

nodes.

• Supply telemetry to higher-level
nodes as alerts.

• Allow successive refinement of real-
time telemetry into higher-level
abstractions.

29

Example: Hierarchy of Digital Twins
for a Wind Turbine

© ScaleOut Software, Inc.

Digital Twins Simplify Migration to Edge

• Migration of stream-processing intelligence to the edge is an ongoing trend driven by
continuous advances in technology.

• Constructing software components as o-o digital twins simplifies migration:
• Makes software decomposition independent of execution location.

• Avoids rewriting code for execution at the edge; can leverage containers.

30© ScaleOut Software, Inc.

Digital Twins Enable Data Parallel Analysis

• Uses IMDG’s in-memory compute engine to create aggregate statistics in real time.

• Results can be reported to
analysts and updated every
few seconds.

• Results can be used as feedback
to event analysis in digital
twin objects and/or reported
to users.

31© ScaleOut Software, Inc.

ScaleOut Digital Twin Builder™ Toolkit

• API libraries for building digital twin models in Java and C#

• Deployment libraries for hosting in ScaleOut StreamServer

• Connectors to Kafka, Azure IoT, and REST

© ScaleOut Software, Inc. 32

Sample Application (C#)

• Goal: Illustrate use of digital twin to analyze temperature telemetry from a wind turbine.

• Digital twin tracks:

• Parameters: model, pre-maintenance period based on model, max. allowed temperature,
max. allowed over-temp duration (normal and pre-maintenance)

• Dynamic state: time to next maintenance, over-temp condition and its duration

• Message processing:

• Determines onset of and recovery from over-temp condition

• Alerts at maximum allowed duration

• Logs incidents for time-windowing analysis

© ScaleOut Software, Inc. 33

Block Island Wind Farm

Sample State Object (C#)

© ScaleOut Software, Inc. 34

[JsonObject]
public class WindTurbine : DigitalTwinBase
{

// physical characteristics:
public const string DigitalTwinModelType = "windturbine";
public WindTurbineModel TurbineModel { get; set; } = WindTurbineModel.Model7331;
public DateTime NextMaintDate { get; set; } = new DateTime().AddMonths(36);
public const int MaxAllowedTemp = 100; // in Celsius
public TimeSpan MaxTimeOverTempAllowed = TimeSpan.FromMinutes(10);
public TimeSpan MaxTimeOverTempAllowedPreMaint = TimeSpan.FromMinutes(2);

// dynamic state variables:
public bool TrackingOverTemp { get; set; }
public DateTime OverTempStartTime { get; set; }
public int NumberMsgsWithOverTemp { get; set; }

// list of incidents and alerts:
public List<Incident> IncidentList { get; } = new List<Incident>();

}

Sample Message Processor (Outer Loop)

© ScaleOut Software, Inc. 35

public override ProcessingResult ProcessMessages(ProcessingContext context,
WindTurbine dt, IEnumerable<DeviceTelemetry> newMessages)

{
var result = ProcessingResult.NoUpdate;

// determine if we are in the pre-maintenance period for this wind turbine model:
var preMaintTimePeriod = _preMaintPeriod[dt.TurbineModel];
bool isInPreMaintPeriod = ((dt.NextMaintDate

- DateTime.UtcNow) < preMaintTimePeriod) ? true : false;

// process incoming messages to look for over-temp condition:
foreach (var msg in newMessages) {

// if message reports a high temp indication, track it:
if (msg.Temp > WindTurbine.MaxAllowedTemp)

<track over-temp condition>
else if (dt.TrackingOverTemp)

<resolve over-temp condition>
}
return result;}

Track or Resolve Over-Temp Condition

© ScaleOut Software, Inc. 36

// track over-temp condition:
{dt.NumberMsgsWithOverTemp++;

if (!dt.TrackingOverTemp) {
dt.TrackingOverTemp = true; dt.OverTempStartTime = DateTime.UtcNow;
<add a notification to the incident list> }

TimeSpan duration = DateTime.UtcNow - dt.OverTempStartTime;

// if we have exceeded the max allowed duration for an over-temp, send an alert:
if (duration > dt.MaxTimeOverTempAllowed ||

(isInPreMaintPeriod && duration > dt.MaxTimeOverTempAllowedPreMaint)) {
var alert = new Alert(); <fill out the alert message>;
context.SendToDataSource(Encoding.UTF8.GetBytes(JsonConvert.SerializeObject(alert)));
<add a notification to the incident list> }}

// resolve the condition and reset our state:
{dt.TrackingOverTemp = false; dt.NumberMsgsWithOverTemp = 0;
<add a notification to the incident list> }

Deploying the Model

• Deploy the WindTurbine model to ScaleOut StreamServer:

• Connect to a data source (Azure IoT Hub):

© ScaleOut Software, Inc. 37

ExecutionEnvironmentBuilder builder = new ExecutionEnvironmentBuilder()
.AddDependency(@"WindTurbine.dll")
.AddDigitalTwin<WindTurbine, WindTurbineMessageProcessor,

DeviceTelemetry>(WindTurbine.DigitalTwinModelType);

EventListenerManager.StartAzureIoTHubConnector(
eventHubName : _eventHubName,
eventHubConnectionString: _eventHubConnectionString,
eventHubEventsEndpoint : _eventHubEventsEndpoint,
storageConnectionString : _storageConnectionString,
consumerGroupName : "");

Example: Heart-Rate Watch Monitoring

Goal: Track heart-rate for a large population of runners.

• Heart-rate events flow from smart watches to their respective digital twin objects for analysis.

• The analysis uses wearer’s history, activity, and aggregate statistics to determine feedback and alerts.

38© ScaleOut Software, Inc.

Digital Twin Object (Java)

• Holds event collection and user’s context (age, medical history, current status, etc.):

39

public class User implements Serializable {
private int _id;
private double _height;
private double _bodyWeight;
private Gender _gender;
private int _age;
private int _averageHr;
private WorkoutProgress _status;
private int _sessionAverageMax;
private List<Medication> _medications;
private List<Long> _heartIncidents;
private List<HeartRate> _runningHeartRateTelemetry;
private long _alertTime;
private boolean _alerted;
...}

Event collection

User’s context

© ScaleOut Software, Inc.

Events & Alerts

• Event holds periodic telemetry sent from watch to IMDG:

• Alert holds data to be sent back to wearer and/or to medical personnel:

40

public class HeartRateEvent {
private int _userId;
private int _heartRate;
private long _timestamp;
private WorkoutType _workoutType;
private WorkoutProgress _workoutProgress;
private Event _event;
...}

public class HeartRateAlert {
private int _userId;
private String _alertType;
private String _params;
...}

© ScaleOut Software, Inc.

Event Analysis

• Handles an event for an active user doing a running workout:

41

private static void processMessage(HeartRateEvent hre, User u) {
long start = twoWeeksAgo();
long sessionTimeout = threeHours();
SessionWindowCollection<HeartRate> swc = new

SessionWindowCollection<>(u.getRunningHeartRateTelemetry(),
heartRate -> heartRate.getTimestamp(), start, sessionTimeout);

swc.add(new HeartRate(hre.getHeartRate(), hre.getTimestamp()));

int total = 0; int windowCount = 0;
for(TimeWindow<HeartRate> window : swc) {

int avg = 0;
for(HeartRate hr : window) {avg += hr.getHeartRate();}
total += (avg/window.size());
windowCount++;}

u.setAverageHr(total/windowCount);
u.analyzeAndCheckForAlert(hre);}

Analyze event history

Analyze user’s context

Create time windows

© ScaleOut Software, Inc.

Analysis Techniques Enabled by Digital Twin

Enable detailed heart-rate monitoring for a high intensity exercise program:

• Example of data to be tracked:
• Exercise specifics: type of exercise, exercise-specific parameters (distance,

strides, altitude change, etc.)

• Participant background/history: age, height, weight history, heart-related
medical conditions and medications, injuries, previous medical events

• Exercise tracking: session history, average # sessions per week, average and
peak heart rates, frequency of exercise types

• Aggregate statistics: average/max/min exercise tracking statistics for all participants

• Example of logic to be performed:
• Notify participant if session history across time windows indicates need to change mix.

• Notify participant if heart rate trends deviate significantly from aggregate statistics.

• Alert participant/medical personnel if heart rate analysis across time windows indicates an imminent
threat to health.

• Report aggregate statistics to analysts and/or users.

42© ScaleOut Software, Inc.

Data Parallel Analysis Across all Digital Twins

• Uses IMDG’s in-memory compute engine to create aggregate statistics in real time.

• Results can be reported to
analysts and updated every
few seconds.

• Results can be used as feedback
to event analysis in digital
twin objects and/or reported
to users.

43© ScaleOut Software, Inc.

Computing Aggregate Data

• Performs a data-parallel computation using the IMDG’s Eval and Merge methods:

44

public class AggregateStatsInvokable implements Invokable<User, Integer,
AggregateStats> {
@Override
public AggregateStats eval(User u, Integer numUsers) {

AggregateStats userStats = new AggregateStats(numUsers);
userStats.merge(u);
return userStats ;

}

@Override
public AggregateStats merge(AggregateStats mergedStats,

AggregateStats u) {
mergedStats.merge(u);
return mergedStats;

}
}

Eval method

Binary merge method

© ScaleOut Software, Inc.

Computing Aggregate Data (2)

• Computes running average of heart-rate by categories:

45

public void merge(AggregateStats user) {
numEvents += user.getNumEvents();
totalHeartRate18to34 += user.getTotalHeartRate18to34();
totalHeartRate35to50 += user.getTotalHeartRate35to50();
totalHeartRateOver50 += user.getTotalHeartRateOver50();
count18to34 += user.getCount18to34();
count35to50 += user.getCount35to50();
countOver50 += user.getCountOver50();

totalHeartRateBmiUnderWeight += user.getTotalHeartRateBmiUnderWeight();
totalHeartRateBmiNormalWeight += user.getTotalHeartRateBmiNormalWeight();
totalHeartRateBmiOverweight += user.getTotalHeartRateBmiOverweight();
countUnderweight += user.getCountUnderweight();
countNormalWeight += user.getCountNormalWeight();
countOverWeight += user.getCountOverWeight();

}

Creates Groups

© ScaleOut Software, Inc.

Running the Data-Parallel Computation

• Uses a single method to run a data-parallel computation and return results.

• Publishes merged results to an IMDG object for access by user objects and/or analysts.

46

public void run() {
NamedCache usersCache = CacheFactory.getCache(“userCache”);
NamedCache statsCache = CacheFactory.getCache(“statsCache”);
AggregateStats stats;

InvokeResult<AggregateStats> result =
usersCache.invoke(AggregateStatsInvokable.class, null, _numUsers,

TimeSpan.fromMilliseconds(10000));

stats = result.getResult();
statsCache.put(“globalStats”, stats);

}

Invoke data-parallel op

Store result in IMDG

© ScaleOut Software, Inc.

Wrap-Up

Digital Twins: The Next Generation in Stream-Processing and Real-Time Analytics

• Challenge: Current techniques for stateful stream-processing:

• Lack a coherent software architecture for managing context.

• Can suffer from performance issues due to network bottlenecks.

• The digital twin model:

• Offers a flexible, powerful, scalable architecture for stateful stream-processing:

• Associates events with context about their physical sources for deeper introspection.

• Enables flexible, object-oriented encapsulation of analysis algorithms.

• Provides a basis for aggregate analysis and feedback.

• Stateful stream-processing using digital twin models in ScaleOut StreamServer:

• Automatically correlates incoming events and processes them in parallel.

• Enables integrated stream-processing and real-time analytics.

47© ScaleOut Software, Inc.

www.scaleoutsoftware.com

Thank you!
For more information:
• ScaleOut Software: www.scaleoutsoftware.com
• ScaleOut Digital Twin Builder User Guide:

https://static.scaleoutsoftware.com/docs/ScaleOut_Digital_Twin_Builder_User_Guide.pdf
• ScaleOut blog: https://www.scaleoutsoftware.com/news-blog/
• Java Digital Twin Builder libraries: github.com/scaleoutsoftware/JavaDigitalTwinCore
• .NET Digital Twin Builder libraries: www.nuget.org/packages/Scaleout.Streaming.DigitalTwin.Deployment/
• REST Digital Twin message service: hub.docker.com/r/scaleout/dtbuilder_webmessenger/

http://www.scaleoutsoftware.com/
https://static.scaleoutsoftware.com/docs/ScaleOut_Digital_Twin_Builder_User_Guide.pdf
https://www.scaleoutsoftware.com/news-blog/
https://github.com/scaleoutsoftware/JavaDigitalTwinCore
http://www.nuget.org/packages/Scaleout.Streaming.DigitalTwin.Deployment/
https://hub.docker.com/r/scaleout/dtbuilder_webmessenger/

