

Webinar: Digital Twins: The Next Generation in Stream-Processing and Real-Time Analytics

Dr. William Bain, Founder and CEO (wbain@scaleoutsoftware.com)

December 11, 2018

- About ScaleOut Software
- Our core technologies: software for in-memory data grids and computing
- Challenges for stream-processing
- A solution: the digital twin model
- Running digital twins on an IMDG
 - Advantages
 - Comparison to traditional approaches
- IoT example with C# code using ScaleOut Digital Twin Builder™
- IoT example with Java code incorporating data-parallel feedback

About ScaleOut Software

- Develops and markets In-Memory Data Grids, software middleware for:
 - Scaling application performance and
 - Providing operational intelligence using
 - In-memory data storage and computing
- Dr. William Bain, Founder & CEO
 - Career focused on parallel computing
 - Bell Labs, Intel, Microsoft
- Eleven years in the market:
 - 450+ customers, 10,000+ servers
- Sample customers:

ScaleOut Software's Products

ScaleOut StateServer[®] & ScaleOut GeoServer[®]

- In-Memory Data Grid (IMDG) for Windows and Linux
- Application scaling with strong consistency & high av
- APIs in Java, C#, C/C++
- Deployable on-premises and in public clouds (Azure, AWS)
- Global data replication and remote data access
- Released in 2005; now in 5th major version
- ScaleOut StreamServer[™] & ScaleOut Digital Twin Builder[™]
 - Stateful stream-processing with digital twins
 - Simplified development for digital twins in Java, C#
 - Support for ReactiveX APIs, Kafka, and Azure IoT
 - Integrated IMDG and in-memory compute engine
 - Real-time, data-parallel analytics

Core Technology: IMDG + IMC

- In-Memory Data Grid (IMDG): cluster-hosted software which provides fast, distributed in-memory storage for live data:
 - Uses object-oriented, key/value storage model
 - Location-transparent access to data by multiple clients
 - Create/read/update/delete APIs for Java/C#/C++
 - Parallel query by object properties
- In-Memory Computing: integrated software-based compute engine for streaming & data-parallel ops
 - Runs o-o methods on live data with low latency
 - Avoids network bottlenecks by computing in the IMDG.
- **Both**: Transparent scalability and high availability:
 - Automatic load-balancing across commodity servers
 - Automatic data replication, failure detection, and recovery

Logical view

IMDG Storage Model

How an IMDG Can Integrate Computation

- Each grid host runs a worker process which executes application-defined methods on stored objects.
 - The set of worker processes is called an *invocation grid (IG)*.
 - IG usually runs language-specific runtimes (JVM, .NET).
 - IMDG can ship user code to the IG workers.
- Key advantages for IGs:
 - Follows object-oriented model.
 - Avoids network bottlenecks by moving computing to the data.
 - Leverages IMDG's cores & servers.

© ScaleOut Software, Inc.

7

\$

IG

Worker

IMDG Runs Handlers for Stream-Processing **ScaleOut Software**

Event handlers run independently for each incoming event:

- IMDG directs event to a specific object (e.g., using ReactiveX) for low latency.
- IMDG executes multiple event handlers in parallel for high throughput.

Ċ

IG

Worker

\$

IG

Worker

IMDG Also Runs Data-Parallel Computations (ScaleOut Software

Method execution implements a parallel operation on a stored object collection:

- Client runs a single method on all objects in a collection.
- Execution runs in parallel across the grid.
- Results are merged and returned to the client.
- Runs with lower latency than batch jobs.

A Basic Data-Parallel Execution Model

A fundamental model from parallel supercomputing:

- Run one method ("eval") in parallel across many data objects.
- Optionally merge the results.
 - Binary combining is a special case, but...
 - It runs in logN time to enable scalable speedup

objects stored in the IMDG:

Example: MapReduce Computation

ScaleOut Software

- Implements "group-by" computations on *live* data.
- Example: "Determine average RPM for all wind turbines by region (NE, NW, SE, SW)."
- Runs in two data-parallel phases (map, reduce):
 - Map phase extracts, repartitions, and optionally combines source data.
 - **Reduce** phase analyzes each data partition in parallel.
 - Returns results for each partition.

Goals for Stream-Processing

- Goals:
 - Process incoming data streams from many (1000s) of sources.
 - Analyze events for patterns of interest.
 - Provide timely (real-time) feedback and alerts.
 - Provide data-parallel analytics for aggregate statistics and feedback.
- Many applications:
 - Internet of Things (IoT)
 - Medical monitoring
 - Logistics
 - Financial trading systems
 - Ecommerce recommendations
- **Challenge**: How can we track the dynamic state of data sources to enhance real-time analysis?

Event Sources

12

Example: Ecommerce Recommendations

1000s of online shoppers:

- Each shopper generates a clickstream of products searched.
- Stream-processing system must:
 - Correlate clicks for each shopper.
 - Maintain a history of clicks during a shopping session.
 - Analyze clicks to create new recommendations within 100 msec.
- To be effective, analysis should:
 - Take into account the shopper's preferences and demographics.
 - Use aggregate feedback on collaborative shopping behavior.

Real-Time Recommendations

- Requires *stateful* stream-processing to analyze each click and respond in <100ms:
 - Can accept input with each event on shopper's preferences and track these preferences.
 - Can analyze aggregate behavior and provide feedback on best-selling products.

Real-Time, Aggregate Metrics

- Dynamically aggregates statistics for all shoppers:
 - Track real-time shopping behavior.
 - Chart key purchasing trends.
 - Enable merchandizer to create promotions dynamically.
- Combined statistics can be shared with all shoppers:
 - Allows shoppers to obtain collaborative feedback.
 - Examples include most viewed and best selling products.

y Metrics		Edit	Metrics						
umber of Active	Total Active Cart Value		Statistic					Latest V	alue
ustomers	Total Active care value		Max Clicks to Pu	irchase				2	26 🔺
50	\$27,800.00		Max Clicks to Su	ccessful Reco	mmendatior				9
			Max Clicks to Fir	st View				1	10
umber of Products iewed	Number of Products Carted		Conversion Rate	n.				47.00	%
820	350		Average Clicks from Cart to Purchase			2.0	00		
			Max Clicks from	Cart to Purch	ase				8
p 5 at a Glance)		% Reduction in	Average Click	s to Cart			25.00	%
Top 5 Product Categories by Revenue ▼ ● Now ○ At: 00 ▼ 00 ▼ UTC		Boost Factor			2.0	00			
p o rioduce categories by		Juic	Potential Conversion Rate					95.009	%
Top 5 Product Categories by Revenue			Potential Revenue Increase					\$2,000,000.00	
			Average Purcha	se Size				\$250.0	00
			% Carts Purcha	sed				85.00	%
			% Carted Produ	icts Recomme	nded			95.00	%
			% Purchased Products Recommend				mmended		
Name	Value			70					
Guitars		\$107,074.00		60 •					
Cell Phones		\$92,718.00	Value	50					
Hair Care		\$108,832.00	>	40					
Laptops		\$121,716.00		30					
to calle all part include		\$106,752.00		20					
Headphones				10					
Headphones									

Challenges for Stream-Processing

• Basic stream-processing architecture is a pipeline (or acyclic graph):

- Challenges unmet by traditional architectures:
 - How efficiently correlate events from each data source?
 - How combine events with relevant state information to create the necessary context for analysis?
 - How embed application-specific analysis algorithms in the pipeline?
 - How generate feedback/alerts with low latency?
 - How perform data-parallel analytics to determine aggregate trends?

Adding Context to Stream-Processing

- Stateful stream-processing platforms add "unmanaged" data storage to the pipeline:
 - Pipeline stages perform transformations in a sequence of stages from data sources to sinks.
 - Data storage (distributed cache, database) is accessed from the pipeline by application code in an unspecified manner.
 - Examples: Apama (CEP), Apache Flink, Storm

Stream Pipeline

How can we efficiently combine stream-processing with state (context) to enable real-time analytics, simplify design, and maximize performance?

ScaleOut Software

A Solution: the "Digital Twin" Model

- Term coined by Dr. Michael Grieves (U. Michigan) in 2002 for use in product life cycle management
- Popularized in Gartner's "Top 10 Strategic Technology Trends for 2017: Digital Twins" for use with IoT
- **Definition**: a digital representation of a physical entity; an encapsulated software object that comprises (per Gartner):
 - A model (e.g., composition, structure, metadata for an IoT sensor)
 - Data (e.g., sensor data, entity description)
 - Unique identity (e.g., sensor identifier)
 - Monitoring (e.g., alerts)
- Significance: focuses on modeling data sources
 - A basis for correlating and analyzing streaming data
 - A context for deep introspection and interaction

Many Uses of the Term "Digital Twin"

Although created by Michael Grieves for product life cycle management (PLM)...

- The term "digital twin" has several interpretations, for example:
 - Digital twin as used in PLM and product-line engineering (from Marc Lind, SVP Aras Corp.)
 - A virtual version of a physical entity
 - Adds context to interpret the time-series data streaming back from the field
 - Azure digital twin: spatial graph of spaces, devices, and people for modeling relationships in context
 - Azure IoT device twin: JSON document that stores per-device state information (metadata, conditions)
 - AWS device shadow: cloud-based repository for per-device state information with pub/sub messaging

• ScaleOut's use of digital twin:

- Object-oriented model of a data source (or higher-level entity) for use in real-time streaming analytics
- **Benefit:** *enables* real-time streaming analytics which is:
 - Fast and scalable
 - Easy to use

Examples of Digital Twins in IoT

Creating Digital Twins with OOP

- A digital twin **model** represents a type of data source (e.g., a wind turbine).
- Each digital twin **instance** represents a specific physical data source (e.g., wind turbine 73).
- Digital twin typically comprises:
 - An event collection
 - State information about the data source
 - Logic for managing events & commands, updating & analyzing state, generating alerts
- Object oriented model:
 - Holds source's dynamic state information.
 - Encapsulates domain-specific logic (e.g., ML, rules engine, etc.).
 - Runs code where the data lives (avoids data motion) for fast response times.
 - Enables data-parallel analysis.

ScaleOut Software

Using an IMDG to Host Digital Twins

🕅 ScaleOut Software

The IMDG:

- Can host thousands of digital twins as objects.
- Can post incoming events to their respective digital twin objects.
- Can run the twin's event handler method with low latency:
 - Event handler uses and updates in-memory state.
 - Event handler can manage an event collection and use time windows for its analysis.
 - Event handler can use/update off-line state.
 - Event handler optionally generates alerts and feedback to its digital twin.
- Also can run data-parallel methods to analyze all digital twins in real-time.
 - Collects and reports periodic aggregate statistics.
 - Results can be used for both alerting and feedback.

Why Use an IMDG to Host Digital Twins?

• Object-oriented data storage:

- Offers a natural model for hosting digital twins.
- Cleanly separates domain logic from data-parallel orchestration.
- Provides rich context for correlating and processing streaming data.
- Allows easy addition of specialized analysis algorithms (rules, ML, etc.)
- Integrates streaming and data-parallel processing.
- High performance:
 - Avoids data motion and associated network bottlenecks.
 - Fast and scales to handle large workloads.
- Integrated high availability:
 - Uses data replication designed for live systems.
 - Can ensure that computation is high av.

Comparison to Traditional Architecture

🞊 ScaleOut Software

An IMDG:

- Avoids the need to correlate events from each data source in the stream processing pipeline:
 - Reduces application complexity.
 - Eliminates network bottlenecks.
- Refactors processing steps to perform them in one location:
 - Allows application encapsulation.
 - Avoids data motion between pipeline stages.
- Provides a basis for transparent scaling:
 - Leverages the grid's load-balancing of digital twin objects across the IMDG.
- Enables data-parallel analytics.

Stateless Stream-Oriented Model:

Digital Twin Model:

Important to Avoid Network Bottlenecks

- Hosting digital twins in an IMDG avoids network bottlenecks associated with accessing a database or networked cache in a stream-processing pipeline.
 - External data storage requires network access to obtain an event's context.
 - Network bottleneck prevents scalable throughput.

Moves Streaming Analytics into Real Time

- Lambda architecture separates streamprocessing ("speed layer") from data-parallel analytics ("batch layer").
- Performance limitations keep streaming analytics in the batch layer.
- This prevents real-time responses with deep introspection.
- ScaleOut's digital twin model running on ScaleOut StreamServer's IMDG+IMC enables:
 - Deep introspection in the speed layer
 - Real-time feedback from event analytics
 - Data-parallel analytics to detect aggregate trends in real time

ScaleOut StreamServer

Example: Microsoft Azure IoT Services Architecture

Many Applications for Digital Twins

A digital twin correlates incoming events with context using domain-specific algorithms to generate alerts:

Application	Context	Events	Logic	Alerts
IoT devices	Device status & history	Device telemetry	Analyze to predict maintenance.	Maintenance requests
Medical monitoring	Patient history & medications	Heart-rate, blood- pressure, etc.	Evaluate measurements over time windows with rules engine.	Alerts to patient & physician
Cable TV	Viewer preferences & history, set-top box status	Channel change events, telemetry	Cleanse & map channel events for reco. engine; predict box failure.	Viewer recom- mendations, repair alerts
Ecommerce	Shopper preferences & buying history	Clickstream events from web site	Use ML to make product recommendations.	Product list for web site
Fraud detection	Customer status & history	Transactions	Analyze patterns to identify probable fraud.	Alerts to customer & bank

Example: Tracking a Fleet of Vehicles

Data-Parallel Analytics

- Goal: Track telemetry from a fleet of cars or trucks.
 - Events indicate speed, position, and other parameters.
 - Digital twin object stores information about vehicle, driver, and destination.
 - Event handler alerts on exceptional conditions (speeding, lost vehicle).
- Periodic data-parallel analytics determines aggregate fleet performance:
 - Computes overall fuel efficiency, driver performance, vehicle availability, etc.
 - Can provide feedback to drivers to optimize operations.

OOP Techniques Simplify Digital Twins

ScaleOut Software

Hot Water Valve **Basic Controller** ReadTemperature () ReadFlow () Event Collection temperature= "180F" flowRate= "5.2FPM" IS A HandleEvent() **Basic Controller** Start (); Stop () Event Collection †Ļ HandleEvent() Start(); Stop() / status="started" †. status="started" **Base Class** Sub-Class

• Digital twin objects can use **inheritance** to

create specialized behaviors:

 Instances of objects can be organized in a hierarchy:

Using Digital Twins in a Hierarchy

Tracks complex systems as hierarchy of digital twin objects:

- Leaf nodes receive telemetry from physical endpoints.
- Higher level nodes represent subsystems:
 - Receive telemetry from lower-level nodes.
 - Supply telemetry to higher-level nodes as alerts.
 - Allow successive refinement of realtime telemetry into higher-level abstractions.

Example: Hierarchy of Digital Twins for a Wind Turbine

Digital Twins Simplify Migration to Edge

- Migration of stream-processing intelligence to the edge is an ongoing trend driven by continuous advances in technology.
- Constructing software components as o-o digital twins simplifies migration:
 - Makes software decomposition independent of execution location.
 - Avoids rewriting code for execution at the edge; can leverage containers.

Digital Twins Enable Data Parallel Analysis

- **ScaleOut Software**
- Uses IMDG's in-memory compute engine to create aggregate statistics in real time.
- Results can be reported to analysts and updated every few seconds.

 Results can be used as feedback to event analysis in digital twin objects and/or reported to users.

ScaleOut Digital Twin Builder™ Toolkit

- API libraries for building digital twin models in Java and C#
- Deployment libraries for hosting in ScaleOut StreamServer

• Connectors to Kafka, Azure IoT, and REST

Sample Application (C#)

- Goal: Illustrate use of digital twin to analyze temperature telemetry from a wind turbine.
- Digital twin tracks:
 - *Parameters*: model, pre-maintenance period based on model, max. allowed temperature, max. allowed over-temp duration (normal and pre-maintenance)
 - *Dynamic state*: time to next maintenance, over-temp condition and its duration
- Message processing:
 - Determines onset of and recovery from over-temp condition
 - Alerts at maximum allowed duration
 - Logs incidents for time-windowing analysis

Block Island Wind Farm

Sample State Object (C#)


```
[JsonObject]
public class WindTurbine : DigitalTwinBase
{
    // physical characteristics:
    public const string DigitalTwinModelType = "windturbine";
    public WindTurbineModel TurbineModel { get; set; } = WindTurbineModel.Model7331;
    public DateTime NextMaintDate { get; set; } = new DateTime().AddMonths(36);
    public const int MaxAllowedTemp = 100; // in Celsius
    public TimeSpan MaxTimeOverTempAllowed = TimeSpan.FromMinutes(10);
    public TimeSpan MaxTimeOverTempAllowedPreMaint = TimeSpan.FromMinutes(2);
```

// dynamic state variables:

public bool Tracki	ngOverTemp	{	<pre>get;</pre>	set;	}
<pre>public DateTime Ov</pre>	erTempStartTime	{	<pre>get;</pre>	<pre>set;</pre>	}
<pre>public int NumberM</pre>	sgsWithOverTemp	{	<pre>get;</pre>	<pre>set;</pre>	}

```
// list of incidents and alerts:
public List<Incident> IncidentList { get; } = new List<Incident>();
```

Sample Message Processor (Outer Loop)

public override ProcessingResult ProcessMessages(ProcessingContext context, WindTurbine dt, IEnumerable<DeviceTelemetry> newMessages)

```
var result = ProcessingResult.NoUpdate;
```

{

Track or Resolve Over-Temp Condition

// track over-temp condition: {dt.NumberMsgsWithOverTemp++;

```
if (!dt.TrackingOverTemp) {
    dt.TrackingOverTemp = true; dt.OverTempStartTime = DateTime.UtcNow;
    <add a notification to the incident list> }
```

TimeSpan duration = DateTime.UtcNow - dt.OverTempStartTime;

```
// if we have exceeded the max allowed duration for an over-temp, send an alert:
if (duration > dt.MaxTimeOverTempAllowed ||
        (isInPreMaintPeriod && duration > dt.MaxTimeOverTempAllowedPreMaint)) {
        var alert = new Alert(); <fill out the alert message>;
        context.SendToDataSource(Encoding.UTF8.GetBytes(JsonConvert.SerializeObject(alert)));
        <add a notification to the incident list> }}
```

Deploying the Model

• Deploy the WindTurbine model to ScaleOut StreamServer:

```
ExecutionEnvironmentBuilder builder = new ExecutionEnvironmentBuilder()
.AddDependency(@"WindTurbine.dll")
.AddDigitalTwin<WindTurbine, WindTurbineMessageProcessor,
    DeviceTelemetry>(WindTurbine.DigitalTwinModelType);
```

• Connect to a data source (Azure IoT Hub):

EventListenerManager.StartAzureIoTHubConnector(

eventHubName	: _eventHubName,
eventHubConnectionStrin	<pre>ng: _eventHubConnectionString,</pre>
eventHubEventsEndpoint	: _eventHubEventsEndpoint,
storageConnectionString	g : _storageConnectionString,
consumerGroupName	: "");

Example: Heart-Rate Watch Monitoring

Goal: Track heart-rate for a large population of runners.

- Heart-rate events flow from smart watches to their respective digital twin objects for analysis.
- The analysis uses wearer's history, activity, and aggregate statistics to determine feedback and alerts.

Digital Twin Object (Java)

• Holds event collection and user's context (age, medical history, current status, etc.):

Events & Alerts

• Event holds periodic telemetry sent from watch to IMDG:

```
public class HeartRateEvent {
    private int _userId;
    private int _heartRate;
    private long _timestamp;
    private WorkoutType _workoutType;
    private WorkoutProgress _workoutProgress;
    private Event _event;
    ...}
```

• Alert holds data to be sent back to wearer and/or to medical personnel:

```
public class HeartRateAlert {
    private int _userId;
    private String _alertType;
    private String _params;
    ...}
```

Event Analysis

ScaleOut Software

• Handles an event for an active user doing a running workout:

```
private static void processMessage(HeartRateEvent hre, User u) {
      long start = twoWeeksAgo();
      long sessionTimeout = threeHours();
                                                             Create time windows
      SessionWindowCollection<HeartRate> swc = new
          SessionWindowCollection<>(u.getRunningHeartRateTelemetry(),
          heartRate -> heartRate.getTimestamp(), start, sessionTimeout);
      swc.add(new HeartRate(hre.getHeartRate(), hre.getTimestamp()));
                                                                 Add event
      int total = 0; int windowCount = 0;
      for(TimeWindow<HeartRate> window : swc) {
                                                             Analyze event history
          int avg = 0;
          for(HeartRate hr : window) {avg += hr.getHeartRate();}
          total += (avg/window.size());
          windowCount++;}
      u.setAverageHr(total/windowCount);
                                                            Analyze user's context
      u.analyzeAndCheckForAlert(hre);}
```

Analysis Techniques Enabled by Digital Twin 🔗 ScaleOut Software

Enable detailed heart-rate monitoring for a high intensity exercise program:

- Example of data to be tracked:
 - **Exercise specifics**: type of exercise, exercise-specific parameters (distance, strides, altitude change, etc.)
 - **Participant background/history**: age, height, weight history, heart-related medical conditions and medications, injuries, previous medical events
 - **Exercise tracking**: session history, average # sessions per week, average and peak heart rates, frequency of exercise types
 - Aggregate statistics: average/max/min exercise tracking statistics for all participants
- Example of logic to be performed:
 - Notify participant if session history across time windows indicates need to change mix.
 - Notify participant if heart rate trends deviate significantly from aggregate statistics.
 - Alert participant/medical personnel if heart rate analysis across time windows indicates an imminent threat to health.
 - **Report** aggregate statistics to analysts and/or users.

Data Parallel Analysis Across all Digital Twins (M) ScaleOut Software

- Uses IMDG's in-memory compute engine to create aggregate statistics in real time.
- Results can be reported to analysts and updated every few seconds.

 Results can be used as feedback to event analysis in digital twin objects and/or reported to users.

Computing Aggregate Data

• Performs a data-parallel computation using the IMDG's Eval and Merge methods:

Computing Aggregate Data (2)

• Computes running average of heart-rate by categories:

```
public void merge(AggregateStats user) {
    numEvents += user.getNumEvents();
    totalHeartRate18to34 += user.getTotalHeartRate18to34();
    totalHeartRate35to50 += user.getTotalHeartRate35to50();
    totalHeartRateOver50 += user.getTotalHeartRateOver50();
    count18to34 += user.getCount18to34();
    count35to50 += user.getCount35to50();
    countOver50 += user.getCountOver50();
```

```
totalHeartRateBmiUnderWeight += user.getTotalHeartRateBmiUnderWeight();
totalHeartRateBmiNormalWeight += user.getTotalHeartRateBmiNormalWeight();
totalHeartRateBmiOverweight += user.getTotalHeartRateBmiOverweight();
countUnderweight += user.getCountUnderweight();
countNormalWeight += user.getCountNormalWeight();
countOverWeight += user.getCountOverWeight();
```

Running the Data-Parallel Computation

- Uses a single method to run a data-parallel computation and return results.
- Publishes merged results to an IMDG object for access by user objects and/or analysts.

Wrap-Up

Note: Note:

Digital Twins: The Next Generation in Stream-Processing and Real-Time Analytics

- **Challenge**: Current techniques for stateful stream-processing:
 - Lack a coherent software architecture for managing context.
 - Can suffer from performance issues due to network bottlenecks.
- The digital twin model:
 - Offers a flexible, powerful, scalable architecture for stateful stream-processing:
 - Associates events with context about their physical sources for deeper introspection.
 - Enables flexible, object-oriented encapsulation of analysis algorithms.
 - Provides a basis for aggregate analysis and feedback.
- Stateful stream-processing using digital twin models in ScaleOut StreamServer:
 - Automatically correlates incoming events and processes them in parallel.
 - Enables integrated stream-processing and real-time analytics.

Thank you!

For more information:

- ScaleOut Software: <u>www.scaleoutsoftware.com</u>
- ScaleOut Digital Twin Builder User Guide: <u>https://static.scaleoutsoftware.com/docs/ScaleOut_Digital_Twin_Builder_User_Guide.pdf</u>
- ScaleOut blog: https://www.scaleoutsoftware.com/news-blog/
- Java Digital Twin Builder libraries: github.com/scaleoutsoftware/JavaDigitalTwinCore
- .NET Digital Twin Builder libraries: <u>www.nuget.org/packages/Scaleout.Streaming.DigitalTwin.Deployment/</u>
- REST Digital Twin message service: <u>hub.docker.com/r/scaleout/dtbuilder_webmessenger/</u>

www.scaleoutsoftware.com