
 © Copyright 2006 by ScaleOut Software, Inc.

Scaling Web Applications on Server-Farms
Requires Distributed Caching

A White Paper from ScaleOut Software

Dr. William L. Bain
Founder & CEO

Spurred by the growth of Web-based applications running on server-farms, a new
category of data is beginning to play a key role in driving high performance. Called
workload data, this information claims the unique properties of being simultaneously
mission critical, frequently accessed, and often short lived. Workload data can either be
generated by the application or it can represent data cached from recent access to a
database server. Examples include intermediate business logic state, Web session-state,
and cached data sets.

This unusual combination of characteristics has created
the fast-growing need for applications to store workload
data in a distributed cache that is shared across the
server-farm. A distributed cache holds key workload
data in memory for high performance. It also allows
simultaneous access from any server in the farm to
simplify application design. Distributed caching
enables server-farms to meet the new performance,
scalability and availability challenges created by the
management of workload data.

This white paper examines the need for distributed
caching and its importance in building server-farm
applications. It describes ScaleOut StateServer, a
distributed cache for the .NET platform, and shows
how it can be used to easily integrate distributed
caching into the design of new applications.

Growth of Server-Farms
Over the past several years, server-farms have rocketed in popularity because they
remove a crippling barrier to the growth of Web-based applications. By enabling
applications to both scale in capacity and provide non-stop availability, server-farms
have played a major role in the rapid expansion of Web-based computing. The
emergence of hardware and software IP load-balancers in the late 1990s catalyzed the
development of server-farms by transparently distributing incoming client requests
among the servers of a farm. However, Web-based applications and services were not
designed to run on server-farms. As a result, all application data had to be stored in a
database server so that the application could retrieve it from any server in the farm.

The traditional method
of storing fast-
changing application
state in database
servers no longer
meets the needs of
today's server-farms.
The growing use of
server-farms in
mission-critical
applications has made
distributed caching a
key requirement in
delivering high
performance and
scalability.

Scaling Web Applications on Server-farms Requires Distributed Caching Page 2 of 10

This constraint limits the application’s performance and scalability, and it imposes an
additional load on the database server. In essence, server-farms move the performance
bottleneck from the Web server to the database server.

E
th

er
ne

t

E
th

er
ne

t

Web Server

Web Server

Web Server

Database
Server

Internet

Typical Web Farm Architecture

Distributed caching solves these problems by enabling Web-based applications to
maintain memory-based state and avoid repeated round-trips to the database server. For
distributed caching to be effective, application state must be uniformly accessible from
all servers. This enables the IP load-balancer to distribute client requests to any server
in the farm. Distributed caching thereby creates a breakthrough in application
performance, and it eliminates a bottleneck at the database server. It also can help
maintain the simplicity of application design.

Workload Data
For Web-based applications, workload data represent the application’s state
information that must be maintained between client requests. For example, e-commerce
applications use shopping carts to record each customer's progress in a shopping
session. Online banking applications might maintain pro forma account balances and
login state to back-end mainframe servers during customer sessions. In addition, all
Web-based applications, typically maintain cached database information, such as
category lists, for rapid access in producing output pages.

Other types of server-farm and grid applications also make use of workload data that
represent the state of a distributed application. For example, scientific modeling and
weather forecasting applications keep application state in the form of a distributed
“grid” that is partitioned among the servers. Likewise, multi-player games often
distribute the various regions of a game and its players among the servers of a farm.

Scaling Web Applications on Server-farms Requires Distributed Caching Page 3 of 10

All of these examples of workload data share a common set of unique characteristics
that are important in their usage on server-farms:

• mission-critical: Loss of data can have a significant impact on the overall
application; for example, loss of a shopping cart can result in the loss of a sale
in an e-commerce transaction.

• short lived: The data are only used for the duration of a session or of the overall
application, and once a transaction is committed, they may no longer be needed;
for example, after an e-commerce purchase is made, the shopping cart is
removed. Note that some workload data cached from a database server may
persist beyond the duration of an individual session.

• frequently accessed: Workload data are frequently accessed and updated during
their relatively short lifespan; for example, the state of an online banking
transaction may change rapidly as the user progresses through a session. Unlike
cached database data, fast-changing workload data have a much higher ratio of
writes to reads.

The characteristics of workload data present a striking contrast to long-lived, line-of-
business (LOB) data, such as accounting information, customer profiles, scientific data,
census information, and other similar data, which are typically held in database servers.
The following table shows how these two types of data tend to differ:

 LOB Data Workload Data
Volume High Low
Lifetime/turnover Long/slow Short/fast
Access patterns Complex Simple
Data preservation Critical Less critical
Fast access/update Less important More important

Comparison of Workload Data to LOB Data

These differences create new challenges for effectively storing workload data on
server-farms.

Traditional Approaches for Storing Workload Data
As the need to efficiently manage workload data on server-farms has become
increasingly important, Web architects have explored various approaches to this
problem, each of which has important shortcomings:

• client-side cookies: This approach, which is often used in client/server systems,
transparently stores session data on the client system. Since the information
must travel back and forth between client and server on each page access, the
data size must be kept very small, and security can be a challenge. This
approach is only suitable for client-server applications.

Scaling Web Applications on Server-farms Requires Distributed Caching Page 4 of 10

• in-memory storage on the server: This technique stores workload data in
memory on the server. For client-server applications, it requires that session
affinity to a particular server be maintained by the load-balancer, and this limits
scalability. Many ISPs routinely change IP addresses mid-session, which can
cause sessions to be lost. Also, a server cannot be taken down for maintenance
until all sessions are drained from it. Two additional limitations of this approach
are that in-memory storage is lost if a server fails, and this storage is not
accessible to other servers in the farm.

• memory-based storage server: This solution uses a dedicated server to hold
workload data for a server-farm and solves the issues associated with session
affinity by making workload data accessible to all servers. However, it also
introduces a single point of failure that can make all session data unavailable
farm-wide in the case the storage server fails. Also, this method of storage does
not scale with growth in the server-farm and can easily become a performance
bottleneck for larger server-farms.

• database server: Because database servers have been optimized over many
years for reliably storing and searching large volumes of long lived, line-of-
business data, they typically are not well suited for holding workload data. The
repeated reads and writes of workload data from a database server tends to
impede application performance and slow down the database server. Also,
unless the database server is running on a server cluster, it represents a single
point of failure for the farm. Because clustering tends to be expensive and
complicates management of the farm, it usually is only implemented in very
high-end operations.

The limitations of these traditional storage techniques can be summarized in the
following table. Note that none of these techniques simultaneously solves the
challenges of providing performance, scalability, and high availability. The table also
shows that distributed caching meets all these challenges; this will be explored in detail
in the next section.

Required for Server-farms
Storage method Performance Scalability Hi-av

Client-side cookies
In-process
Memory-based server
Database (not clustered)
Database (clustered)
Distributed caching

Comparison of Storage Methods on Server-Farms

Because there was no choice in the past, Web architects were forced to choose among
the traditional alternatives for storing workload data. However, these methods of

Scaling Web Applications on Server-farms Requires Distributed Caching Page 5 of 10

storing workload data are no longer sufficient for serious applications running on
server-farms. The growing use of server-farms in mission-critical applications has made
the effective handling of workload data increasingly important in maintaining high
performance and availability.

Why are each of these techniques, insufficient for today's server-farms? The potentially
voluminous and sensitive nature of workload data rules out the use of client-side
cookies as a general solution; cookies are primarily used only to hold login information.
In-process storage is too volatile for mission-critical workload data, and its use impedes
the IP load-balancer’s ability to scale performance. A stand-alone memory-based server
or database server introduces a new bottleneck to performance scaling, and it also
creates a single point of failure. Clustered database servers avoid the single point of
failure, but they do not remove the performance bottleneck. The key limiting factor for
scalability on server-farms is the performance bottleneck for workload data storage.

The Next Generation: Distributed Caching
The recent recognition of workload data as being uniquely demanding has required the
development of new technology. To maximize performance and scalability, workload
data should be kept as close as possible to the application that uses it and ideally in
memory on the server-farm. This can be accomplished using a distributed, in-memory
cache readily accessible to applications on all servers. Distributed caching boosts
performance and eliminates the bottleneck of repeatedly saving and retrieving workload
data in a database server. It also minimizes overall cost by avoiding the use of
expensive clustered database resources. Interestingly, this approach has been
successfully used for many years to maximize performance in high-performance
scientific computing.

However, keeping workload data in a distributed, in-memory cache creates three
important new challenges that the cache designer must solve for this approach to be
viable:

• scalable access: To avoid any bottlenecks to scaling performance as the server-
farm grows, workload data must be automatically distributed, or partitioned,
across the server-farm for parallel access. This allows applications running on
all servers to simultaneously access different stored data. Partitioned data must
be dynamically load-balanced among the servers to avoid creating hot spots in
the farm over time.

• uniform accessibility: Workload data must be uniformly accessible to all servers
in the farm. This allows an application to access workload data that may be
stored on a different server, and it enables the load-balancer to direct client
requests to any server. By doing this, all workload data can be readily accessed
independent of where it is stored on the server-farm.

• high availability: Storing workload data in a distributed, in-memory cache also
requires that it be able to survive the failure of a server. The cache must copy, or
replicate, workload data to additional servers in order to avoid data loss if a
server becomes unavailable. However, to maintain scalability, workload data

Scaling Web Applications on Server-farms Requires Distributed Caching Page 6 of 10

must not be replicated to all servers; otherwise, storage requirements would
increase too quickly as the server-farm and its workload grows.

To be effective in managing workload data on a server-farm, the distributed, in-
memory cache must incorporate and integrate these key mechanisms, i.e., load-
balanced data partitioning, uniform accessibility, and replicated storage. Together, these
mechanisms, along with numerous capabilities such as optimized internal buffering and
storage strategies, enable applications to quickly store and access workload data, and
they help maintain uninterrupted service after failures occur or as servers are added to
the farm.

Implementing these mechanisms in turn requires that the distributed cache be able to
effectively coordinate its actions on all servers and to detect and recover from server
failures. This in turn requires that the distributed cache implement an efficient error
detection and recovery mechanism that allows it to detect the health of servers within
the farm and to heal the distributed cache when a failure occurs. By doing so, the
storage architecture can present a very simple and compelling view to applications that
hides the complexity involved in handling these distributed computing issues. In fact,
applications need not be aware that they are running on a server-farm and that their
workload data has been intelligently distributed across the farm to scale performance.

Another advantage of a distributed, in-memory cache is that applications can keep
workload data in its natural, object-oriented form and avoid converting it to a relational
form for storage in a database server. A distributed, in-memory cache typically stores
workload data as an opaque, binary stream of data that has been automatically
serialized from the objects that the application manages. No additional application code
is necessary to convert an application’s objects into the form needed for out-of-process,
cache storage.

ScaleOut StateServer
ScaleOut StateServer™ from ScaleOut Software provides distributed caching for
server-farms. This product runs as a software service on a Web or application server-
farm and implements the cache within the farm’s random access memory (RAM). It
can be used to create, read, update, and remove opaque workload data objects based on
an identifying key. Stored objects either have been “serialized” from datasets or record
sets that were previously accessed from the LOB database, or are generated as business
logic objects.

To ensure scalable performance and high availability, ScaleOut StateServer
incorporates the three key mechanisms of data partitioning, uniform accessibility, and
replicated data storage. It delivers scalable throughput by partitioning and dynamically
load-balancing workload data across the servers within a farm, as illustrated in the
following diagram. It works seamlessly with an IP load-balancer and enables every
server to access any workload data object stored in the cache. Using patent-pending
technology, it efficiently replicates all data across selected additional servers to ensure
high availability and requires less than ten seconds to failover after a server failure
(versus one or more minutes for a clustered DBMS).

Scaling Web Applications on Server-farms Requires Distributed Caching Page 7 of 10

When a new server is added to the farm, ScaleOut StateServer automatically integrates
the server into the distributed cache, and a portion of the load is migrated to it. The
cache automatically self-heals after a server failure to restore full redundancy. The
product employs a peer-to-peer architecture that eliminates the use of a master server
and enables the distributed cache to recover from multiple server failures.

Distributed Cache

Server ServerServer More Servers

Hi-av Data
Partition A

Hi-Av, Distributed Storage Manager

Hi-av Data
Partition C

Hi-av Data
Partition B Additional Partitions

Scale

Data Partitioning in ScaleOut StateServer

The distributed, in-memory cache provides much faster response time than a database
server by eliminating the need for all servers to repeatedly access a shared database. For
example, consider the scenario of using a distributed cache for an e-commerce Web
farm’s session-state objects. Although the aggregate Web server load grows with the
size of the farm (for example, 500 hits per second per server), the backend database
server handles a fixed maximum request rate (850 requests per second in this example).
If the farm doubles in size, the database server can only deliver half the original
throughput to each Web server. In addition, each database update request may require a
millisecond or more to write to disk and then confirm completion, and the database
server's throughput decreases as the database table grows to accommodate many user
sessions. As the Web server-farm grows in capacity to meet demand, the database
server must be migrated to faster and more expensive multiprocessor hardware to
increase its throughput rate.

Scaling Web Applications on Server-farms Requires Distributed Caching Page 8 of 10

Database Server
(850 req/s)

Web Server
(500 hits/s)

Web Server
(500 hits/s)

Web Server
(500 hits/s)

Web Server
(500 hits/s)

Ethernet

Ethernet

Web Farm Scenario with a Conventional DBMS Server

Compare this scenario to the use of ScaleOut StateServer hosted directly on the Web server-
farm. The distributed cache’s throughput grows as the sum of the throughput for each
storage partition (800 requests per second in this example) so that overall throughput and
application response time per Web server remains constant as the farm grows in capacity.
Unlike a database server, the distributed cache’s throughput increases to match the growing
workload on the server-farm. Further, each update request completes more quickly since no
disk access is required to commit the update.

Web Server
(500 hits/s)

Web Server
(500 hits/s)

Web Server
(500 hits/s)

Web Server
(500 hits/s)

Ethernet

Ethernet

Distributed Cache

StateServer
800 req/s

StateServer
800 req/s

StateServer
800 req/s

StateServer
800 req/s

Web Farm Scenario with ScaleOut StateServer

Scaling Web Applications on Server-farms Requires Distributed Caching Page 9 of 10

Performance Tests
To measure the performance advantage of a distributed, in-memory cache, such as ScaleOut
StateServer (SOSS), over a database server (DBMS) for storing workload data, a .NET test
application was used to compare response times during repeated accesses to these two
storage mechanisms. This test measured the average response time for a repeated sequence
of reads and updates to a pool of stored objects. The tests were run while varying the
following parameters: object size (10B to 1MB), number for stored objects (2K to 5.6M),
and number of servers.(1-28). (Note that for a Web site storing session-state, the number of
stored objects corresponds to the number of concurrent users on the site.) The server-farms
consisted of IBM BladeCenter® servers with 3-3.5 GHz CPUs and Gigabit Ethernet. DBMS
accesses were made to an IBM xSeries 366 server with 2-4 3.6 GHz CPUs,

The test results clearly demonstrate the performance
advantages of using a distributed cache for storing
fast changing workload data. The first chart shows
the average response time for accessing 200 objects
per host on a farm with from one to 28 servers.
SOSS’s response time (blue bars) remains low as the
farm and its storage load grows, while DBMS
response time (red bars) grows with additional load.
SOSS’s scalable throughput delivers performance
gains ranging from 2.3 for 6 hosts to 4.5 times for 28
hosts.

The performance advantages of using a distributed cache increase as more objects are
stored. The second chart shows the average response
time for stores with 50K, 100K, 200K, on a 10
server-farm and for 560K objects on a 28 server-
farm. SOSS’s response time (the blue bars) remains
low as more objects are added, while the DBMS’s
response time grows significantly. SOSS’s
performance gain, which ranges from 4.6 to 16.7
times, results from the distributed cache’s ability to
distribute the workload for accessing and updating
objects across many servers. In contrast, for each
access request, the DBMS must search a single
database table that grows as more objects are stored. In tests with 10KB objects, SOSS
lowered average response time by up to 25.3 times in comparison to the DBMS. This
enables online applications such as very large Web sites to maintain fast response times
while handling workload data for very large numbers of concurrent users.

Summary
As companies move more and more key business applications to the Web, server-farms
have become increasingly critical in maintaining the scalability and high availability of
these applications. Also, as applications manage increasing volumes of workload data,
effective storage techniques must be employed to avoid bottlenecks to scaling or loss of

Average Response Time
1KB Objects, 200 Objects/Server

0

5

10

15

20

1 6 10 15 28

Servers

m
se

cs

SOSS SQL

Average Response Time
1KB Objects

0

10
20

30
40
50

50,000 100,000 200,000 560,000

Stored Objects

m
se

cs

SOSS SQL

Scaling Web Applications on Server-farms Requires Distributed Caching Page 10 of 10

mission-critical data. Traditional approaches to storing workload data, in particular, the use
of a database server, do not meet today’s requirements for delivering high performance on
server-farms.

Recent breakthroughs in workload data storage have eliminated the need to make a trade-off
between performance, scalability, and high availability. Distributed, in-memory caching
hosted directly on the server-farm, offers the opportunity to simultaneously meet all of these
requirements and also to reduce the load on expensive database resources. However, this
exciting new storage architecture presents challenges of its own. By integrating the
techniques of data partitioning, uniform accessibility, and data replication, distributed
caching can be used to dramatically scale the performance of server-farm applications while
maintaining or even simplifying the application’s view of the storage architecture.

ScaleOut StateServer, a software product for distributed caching from ScaleOut Software
designed for .NET server-farms, incorporates patent-pending technology for scaling
performance and replicating data. These features enable it to deliver highly scalable
performance while maintaining high availability for today’s server-farms. Measurements
have shown that ScaleOut StateServer’s performance quickly outpaces the performance of a
database server as the load on a server-farm grows. By using a distributed, in-memory cache
such as ScaleOut StateServer to provide the workload data storage, application architects
can be assured of a server-farm that will meet all the needs of their latest Web-based
applications.

About ScaleOut Software: ScaleOut Software was founded in 2003 by William L. Bain.
Bill has a Ph.D. (1978) from Rice University and has worked at Bell Labs research, Intel,
and Microsoft. Bill founded and ran three start-up companies prior to joining Microsoft. In
the most recent company (Valence Research, Inc), he developed a distributed Web load-
balancing software solution that was acquired by Microsoft and is now called Network Load
Balancing within the Windows Server operating system.

 SCALEOUT SOFTWARE, INC.

Headquarters Sales and Support Email:
10900 NE 8th Street 15075 SW Koll Parkway sales@scaleoutsoftware.com
Suite 900 Suite J support@scaleoutsoftware.com
Bellevue, WA 98004 Beaverton, OR 97006 Web:
425-450-3216 503-643-3422 www.scaleoutsoftware.com

mailto:sales@scaleoutsoftware.com
mailto:support@scaleoutsoftware.com
http://www.scaleoutsoftware.com/

