

How In-Memory Data Grids

Can Analyze Fast-Changing

Data in Real Time

by Dr. William Bain and Dr. Mikhail Sobolev,

ScaleOut Software, Inc.

© 2012 ScaleOut Software, Inc.
12/27/2012

SCALEOUT SOFTWARE

wenty-first century computing infrastructures, especially

cloud computing, are handling larger workloads than ever

and generating huge, fast-growing data sets. “Big data”

analysis platforms have enabled these data sets to be mined for

important patterns and trends. With big data analysis, e-

commerce vendors can target customers more precisely,

financial analysts can quickly spot changing market conditions,

manufacturers can tune logistics planning, and the list goes on.

Parallel computing techniques such as “map/reduce” have opened the door to

dramatically reducing analysis times and are now proliferating in platforms such as open

source Hadoop. However, conventional approaches have not addressed the need to

analyze fast-changing data in real time to meet the needs of operational systems. For

example, financial trading applications need to rapidly respond to fluctuating market

conditions as market data flows through trading systems. Smart grid monitoring systems

need to analyze a stream of telemetry from many sources to anticipate and respond to

unexpected changes in a power grid. In both of these examples, the data sets hold live,

fast-changing data in active, real-time operations.

The ability to continuously analyze operational data using big data techniques unlocks the

potential for organizations to extract important patterns and trends that otherwise cannot

be seen as the data rapidly changes. Unfortunately, popular big data systems such as

Hadoop, which employ file-based storage and batch processing techniques, are not well

suited for this challenge. However, the technology of in-memory data grids (IMDGs) offers

important breakthroughs that enable real-time analysis of operational data. For example,

recent measurements have demonstrated that an IMDG can deliver a complete

map/reduce analysis every four seconds across a terabyte data set which is continuously

being updated at the rate of one gigabyte per second.

This article explains how IMDGs differ from other big data systems and deliver this

important and exciting new capability to analyze fast-changing, operational data.

T

 Analyzing Rivers of Data

To enable rapid updates to a fast-changing data set, IMDGs store data in memory across an

elastic pool of servers. This enables the grid to scale its capacity seamlessly by adding

servers to store and retrieve fast-changing data and handle growing workloads. Typically

organized as a middleware software tier, IMDGs automatically load-balance data across

servers on which the grid is hosted. They also redundantly store data on multiple servers to

ensure high availability in case a server or network link fails. Additional capabilities,

including eventing and distributed locking, make IMDGs a powerful data storage platform

for operational data.

Data sets stored within an IMDG are organized as collections of logically related objects

which can rapidly be created, updated, read, and removed. Having proven their value in

storing fast-changing application data and scaling application performance, some IMDGs

have integrated map/reduce analytics into the grid to perform continuous, real-time

map/reduce analysis of stored data sets. IMDGs incorporate straightforward, well

understood programming techniques to lower the learning curve, shorten the

development cycle, and reduce analysis times. Importantly, advanced IMDGs integrate a

parallel execution engine with memory-based storage to minimize data motion and

enable real-time analysis.

The flow of data through an IMDG can be visualized as a “river” of updates to a stored data

set:

Applications typically use IMDGs to store operational data as part of their ongoing

processing. For example, IMDGs store shopping carts for e-commerce systems, flight

reservations for airline reservations systems, or market data for financial trading systems. In

almost all cases, IMDGs are integrated as middleware into an operational system’s scalable,

parallel architecture to store fast-changing data with fast, predictable response times.

Incorporating continuous analytics into this workflow enables these applications to

maintain a global view of fast-changing data sets and quickly respond to significant

patterns and trends. For example, an e-commerce system can track shopping behavior

during a sale and modify its offers in real-time to boost sales. Likewise, a financial trading

application can evaluate and optimize its trading algorithms over the course of a trading

session. As depicted in the above diagram, analysis results continuously flow out of the

IMDG as map/reduce operations are repeatedly performed every few seconds or minutes.

Compare this scenario to a conventional big data analytics system such as Hadoop. These

systems analyze very large data sets stored in a file system, such as the Hadoop Distributed

File System (HDFS), or in a database. These data sets typically have been extracted from

another storage repository and are not updated during analysis. In contrast with the

IMDG’s processing of a fast-changing river of data, Hadoop can be visualized as analyzing a

large, relatively static “lake” of off-line data:

While conventional big data analytics systems have the ability to analyze very large data

sets reaching into the petabytes, they are not well suited for analyzing fast-changing,

operational data. Their storage systems usually stage data sets from other sources and are

not designed to manage fast-changing, operational data, which require frequent updates

and rapid access. Also, they must move data into memory for analysis, as illustrated in the

following diagram:

Data motion to and from a distributed file system increases both access latency and I/O

overhead, significantly lengthening the execution time for analysis. In contrast, IMDGs

perform analytics in place on memory-based data, avoiding data motion and driving down

the time required to complete a map/reduce analysis. This enables IMDGs to analyze data

significantly faster than Hadoop or other file-based analytics platforms, thereby delivering

results with minimum latency. Because IMDGs typically are integrated into operational

systems processing live data, they can immediately access this data for analysis and

provide real-time feedback for optimizing operations or identifying exceptional

conditions.

An Example in Financial Services

Consider a stock trading application that receives a market feed of stock price changes

occurring during the trading day. This application employs various trading strategies to

place new trades based on tracking the history of price changes for individual stocks and

changing risk profiles. It can store a large set of stock histories in an IMDG as a collection of

objects, one for each stock symbol being tracked and containing the price history of the

stock. These objects are updated within the IMDG as prices frequently change.

Every few seconds, the IMDG can perform map/reduce analytics across either all or a

selected set of stock symbols (such as a market sector), comparing potential returns,

evaluating risk profiles, and optimizing the overall trading strategy. This ability to scan a

large, fast-changing data set in real time gives the analyst an important new tool for

detecting changing market conditions and optimizing the selection of trades to place.

The following diagram illustrates the flow of market data through an IMDG in this stock

trading application and the continuous flow of map/reduce results used to analyze overall

risk and tune the trading application in real time:

This architecture is equally suitable for many other applications, such as:

 a financial lending application reviewing incoming credit applications and

apportioning funds across these requests to continuously minimize overall credit risk,

 an e-commerce application scanning shopping carts to detect popular product

categories and optimize offers on the Web site in real time,

 a fraud detection system for credit card fraud transactions analyzing a flow of

transactions to detect potential fraud and quickly allocate resources to highest threats,

 a logistics system or real-time control system (such as a smart grid) watching changes

to assets within the system and alerting when potentially dangerous conditions are

detected.

Scalable, Real-Time Performance

To demonstrate the performance capabilities of IMDGs running continuous map/reduce

analytics on fast-changing data, ScaleOut Analytics Server™ was deployed on a compute

cluster within the Amazon Web Services EC2 cloud environment. This in-memory data grid

ran on an elastic pool of virtual servers and held partial price histories for a large pool of

stock symbols. While the stock history objects were continuously updated to simulate a

market feed updating stock prices, the IMDG repeatedly executed map/reduce analytics

on the data set to model an ongoing analysis of stock trading strategies during a trading

session.

With each stock history object holding 2 megabytes (MB) of data, a 75-server grid was able

to host a terabyte (TB) of data and another terabyte of replicas to ensure high availability in

case a server failed. Updates were performed at the rates of 10 MB/second and 15

MB/second per server. For 75 servers, the higher update rate resulted in an aggregate

update throughput of 1.1 gigabytes (GB) per second. Note that the grid applies all updates

to both the target objects and their replicas, doubling the overall update bandwidth

required to sustain this rate.

Map/reduce operations were performed repeatedly on all stock objects. As shown in the

following chart, the IMDG was able to complete a map-reduce operation with latencies

ranging from 4.1 seconds under the higher update load to 2.2 seconds when no updates

were in progress:

This chart shows the measured throughput of analysis operations in gigabytes per second

of analyzed data for data sets ranging from 224 GB hosted on 16 servers to 1 TB hosted on

75 servers. For example, with 75 servers, the IMDG was able to analyze a 1 TB data set at

the rate of 250 GB/second under a high update load. The linear increase in throughput

shown in the chart enables analysis time to remain fixed as more servers are added to

handle larger data sets. The IMDG’s ability to store and update a terabyte of data at 1.1

GB/second while performing map/reduce analyses on the entire data set every 4.1 seconds

makes it a very powerful software platform for managing fast-changing, operational data.

Simplifying the Development Model

Beyond delivering breakthrough performance for analyzing fast-changing data, IMDGs

offer key advantages in simplifying the development model. Because they typically are

integrated into the application logic of operational systems, they employ object-oriented

techniques which match the data schemas of application data. IMDGs store data as a

collection of logically related objects which are accessible either by specifying an

identifying key or by querying object properties. For example, an e-commerce Web site

can store a collection of shopping cart objects identified by user IDs and queryable based

on properties such as dollar value or time of last change. As seen above in the financial

trading example, a large collection of stock histories can be stored as objects containing

the price history of each stock and queryable on properties such as sector, market cap, or

other criteria:

Storing data as queryable, object-based collections of operational data provides a

straightforward means for identifying data to be analyzed using map/reduce techniques.

In contrast, conventional big data analysis platforms, such as Hadoop, require that

applications integrate with the data storage layer instead of with operational data residing

in the business logic layer. As a result, applications must read and parse files to generate

key/value pairs for analysis, which adds significant complexity to the application.

The IMDG’s object-oriented storage and query mechanism can quickly scan a large data set

in parallel to identify objects to be analyzed. Because the IMDG automatically load-

balances the objects across a pool of grid servers, the data can be analyzed in place

without the need for network overhead or file I/O to input data for analysis. This avoids a

key bottleneck and speeds up analysis times.

IMDGs take full advantage of the language’s typing system in organizing and querying

objects and in defining analysis code. This simplifies the creation of applications for parallel

analysis. The developer typically just defines two methods, an “analyze” method that

analyzes all queried objects of a given type and a “merge” method that combines the

results generated by the analyze method. Developing these methods requires no special

knowledge of parallel programming because they are written exactly as if they were to be

sequentially executed on an object collection hosted on a single workstation. Some IMDGs

can automatically deploy these “analyze” and “merge” methods on the grid servers for

execution. The following diagram illustrates this application logic in the stock trading

application described above:

A great deal of complexity in conventional big data analysis platforms can be found in the

merging of analysis results using multiple key/value spaces and associated reduction

algorithms used by conventional analysis platforms. While the full map/reduce

programming pattern offers powerful semantics, its inherent complexity adds to

development time and requires careful tuning. Many applications can sidestep this

complexity and simplify application development by employing straightforward binary

merging. ScaleOut Analytics Server uses this merging technique to automatically combine

results across all grid servers into a final result which is delivered back to the user in

memory instead of in the file system.

 In Summary

With the ongoing explosion in live, fast-changing data being managed by operational

systems, such as e-commerce sites and financial trading platforms, the need for fast

insights on emerging trends has become essential. Having already proven their value in

storing fast-changing data, IMDGs provide an important tool for incorporating

map/reduce analysis into operational systems and delivering continuous, real-time results.

IMDGs complement conventional big data analysis platforms, such as Hadoop, which

target very large, static data sets typically hosted in file systems and employ batch

processing techniques. In contrast to these platforms, IMDGs host fast-changing,

operational data sets in memory and employ real-time analysis techniques. Today’s IMDGs

can hold terabytes of data and meet the needs of most operational systems. (Estimates by

some analysts indicate that as much as sixty percent of data sets are smaller than ten

terabytes.) Recent announcements by cloud vendors have extended the memory capacity

of cloud-based servers to 240 gigabytes, which scales the storage capacity of IMDGs to the

tens of terabytes and larger.

By simplifying the development model and automating execution, IMDGs also lower the

learning curve in developing analysis codes and eliminate the tuning steps required by

conventional analysis platforms. Because IMDGs analyze data already staged in memory

and load-balanced across grid servers, they automatically deliver analysis results with

minimum latency and maximum scalability. By using an IMDG, operational systems easily

can start analyzing their fast-changing application data and discover data patterns and

trends that are vital to optimizing the performance of these systems.

About the Authors

Dr. William L. Bain is Founder and CEO of ScaleOut Software, Inc. Bill has a Ph.D. in

electrical engineering/parallel computing from Rice University, and he has worked at Bell

Labs research, Intel, and Microsoft. Bill founded and ran three start -up companies prior to

joining Microsoft. In the most recent company (Valence Research), he developed a

distributed Web load-balancing software solution that was acquired by Microsoft and is now

called Network Load Balancing within the Windows Server operating system. Dr. Bain holds

several patents in computer architecture and distributed computing. As a member of the

Seattle-based Alliance of Angels, Dr. Bain is actively involved in entrepreneurship and the

angel community.

Dr. Mikhail Sobolev is a software architect at ScaleOut Software, Inc. Mikhail has a

Ph.D. in Applied Mathematics from the Moscow Institute of Physics and Technology.

  

www.scaleoutsoftware.com

http://www.scaleoutsoftware.com/

