

Accelerating Hadoop
MapReduce Using an
In-Memory Data Grid

By David L. Brinker and William L. Bain, ScaleOut Software, Inc.

© 2013 ScaleOut Software, Inc.
12/27/2012

 www.scaleoutsoftware.com

adoop has been widely embraced for its ability to economically store and analyze large data sets.
Using parallel computing techniques like MapReduce, Hadoop can reduce long computation times
to hours or minutes. This works well for mining large volumes of historical data stored on disk, but

it is not suitable for gaining real-time insights from live operational data. Still, the idea of using
Hadoop for real-time data analytics on live data is appealing because it leverages existing
programming skills and infrastructure – and the parallel architecture of Hadoop itself.

As competitive pressures build, companies are increasingly pushed to find new ways to
identify and capture business opportunities. Business intelligence (BI) has been around for
years, and it continues to yield important business insights. However, as data volumes
continue to explode, new methods of storage and analysis are needed. Hadoop has
emerged as a popular way to handle both the storage and analysis of these increased
volumes of data. Using Apache Hadoop or one of the many commercial distributions,
companies can store petabytes of data in the Hadoop Distributed File System (HDFS) and
analyze it using MapReduce. The efficiency gains have been impressive.

Even so, BI is only part of the story. As business velocity increases, companies have turned
to real-time analytics on live, operational data to extend their competitive barriers. For
example, e-commerce vendors need to target customers while they shop, financial risk
managers need to quickly react to changing market conditions, manufacturers need to
continuously analyze sensor data to tune production processes – the list of opportunities
continues to grow. Although Hadoop’s parallel architecture can accelerate analytics, when it
comes to fast-changing data, Hadoop’s batch processing and disk overheads are prohibitive.
Other approaches, such as complex event processing (CEP), use highly specialized
programming models and require incremental investments in infrastructure, skills, training,
and software.

What if you could leverage the expertise of your existing Hadoop developers, as well as
your current computing infrastructure, to perform real-time analytics on live, operational
data? This would give you the means to quickly identify and act on “perishable” business
opportunities while you take full advantage of your investment in Hadoop training and
infrastructure. This paper describes how real-time analytics using Hadoop can be performed
by combining an in-memory data grid (IMDG) with an integrated, stand-alone Hadoop
MapReduce execution engine. This new technology delivers fast results for live data and also
accelerates the analysis of large, static data sets.

The First Step: Scalable, In-Memory Data Storage for Live Data
For the last several years, IMDGs have been widely deployed to host live, fast-changing data
within operational systems. Because of their low access latency, scalable capacity and
throughput, and integrated high availability, they have proved to be useful in a wide range of

H

© 2013 ScaleOut Software, Inc. 1

 www.scaleoutsoftware.com

applications. For example, IMDGs are used to hold e-commerce shopping carts, financial market
and trading data, airline reservations, etc.

Typically organized as a middleware software tier, IMDGs automatically store and load-balance
data across an elastic cluster of servers on which the grid is hosted. (They also redundantly
store data on multiple servers to ensure high availability in case a server or network link fails.)
An IMDG’s cluster can seamlessly scale its capacity by adding servers to handle growing
workloads. These servers also provide the computational capacity needed for performing real-
time analytics. This enables the IMDG to incorporate a Hadoop MapReduce engine for analyzing
its live data using standard Hadoop techniques, as illustrated in figure 1 below.

IMDGs need flexible storage mechanisms to handle widely varying demands on the data that
they store. In many cases, they host complex objects with rich semantics to support features
such as property-oriented query, dependencies, timeouts, pessimistic locking, and synchronized
access from remote IMDGs. Other applications need to store and analyze huge numbers of very
small objects, such as sensor data or tweet streams. Interestingly, Hadoop MapReduce
applications have typically been used for large populations of simple objects.

To handle these divergent storage
requirements and efficiently use memory
and network resources, IMDGs can employ
multiple storage APIs, such as the Named
Cache and Named Map APIs shown in the
figure. In both named caches and named
maps, applications can create, read, update,
and delete objects to manage live data. This
gives the application developer the choice to
store and analyze heavyweight objects with
rich metadata or lightweight objects with
highly optimized storage, depending on the
type of data being analyzed.

Because IMDGs typically are integrated into
operational systems which process live data,
they can immediately access in-memory data
for analysis and provide real-time feedback
to optimize operations and identify
exceptional conditions. Integrating a
Hadoop MapReduce engine into an IMDG minimizes analysis time because it avoids data motion
during processing by analyzing data in place. In contrast, hosting data in the Hadoop Distributed
File System (HDFS) requires data to be moved to and from disk, increasing both access latency
and I/O overhead and significantly lengthening analysis time.

Figure 1

© 2013 ScaleOut Software, Inc. 2

 www.scaleoutsoftware.com

Running Hadoop MapReduce in the IMDG
When run using one of the popular, open source distributions, Hadoop MapReduce introduces
numerous overheads that extend analysis times to minutes (and even hours for very large data
sets). These overheads are prohibitive when running real-time analytics that must return results
in milliseconds or seconds. For example, in financial trading systems, every second lost can
materially affect the return on a trading decision.

Advanced IMDGs include parallel computing capabilities that overcome many of these
limitations and enable the semantics of Hadoop MapReduce to be emulated (and optimized),
yielding the same results as standard Hadoop MapReduce only much faster. This enables
standard Hadoop MapReduce code to be run with essentially no changes at all. There is no
need to learn anything new. If your MapReduce program is designed to analyze both live data
and historical data, it could be used in both the IMDG-based real-time environment as well as
standard Hadoop.

How can an IMDG reduce Hadoop’s execution time to enable real-time analytics? The first step
is to eliminate batch scheduling overhead, which can take upwards of 30 seconds using
Hadoop’s standard batch scheduler. Instead, IMDGs can pre-stage a Java-based execution
environment on all grid servers and reuse it for multiple analyses. This execution environment
consists of a set of Java Virtual Machines (JVMs), one on every server within the cluster
alongside each grid service process. These JVMs form the IMDG’s Hadoop MapReduce engine,
as shown in figure 2. Also, the IMDG can automatically deploy all necessary executable
programs and libraries for the execution of MapReduce across the JVMs, greatly reducing
startup time down to milliseconds.

Figure 2

© 2013 ScaleOut Software, Inc. 3

 www.scaleoutsoftware.com

The next step in reducing MapReduce analysis time is to eliminate as much data motion as
possible. Because an IMDG hosts fast-changing data in memory, MapReduce applications can
input data directly from the grid (and output results back to the grid). This speeds up analysis by
avoiding delays in accessing secondary storage. Also, because the execution engine is integrated
with the IMDG, key/value pairs hosted within the IMDG can be efficiently read into the
execution engine to minimize access time, as shown in figure 3. A special record reader, called a
grid record reader, can be used to automatically pipeline the transfer of key/value pairs from the
IMDG’s in-memory storage into the mappers. Its input format automatically creates splits of the
specified input key/value collection to avoid network overhead when retrieving key/value pairs
on all grid servers. Likewise, a grid record writer enables pipelined output of results from
Hadoop's reducers back to IMDG storage. This technique also can be employed to minimize
data motion between the mappers and the reducers by storing intermediate data within the
IMDG’s memory-based storage.

Integration of a Hadoop MapReduce execution engine within an IMDG offers additional
performance optimizations and simplifications:

• To reduce data motion between the mappers and reducers, the execution engine can store
intermediate results within the grid instead of in the local file system. These results also can be
efficiently pipelined to and from grid storage to accelerate MapReduce performance.

• The use of grid-based storage for the input data set and results enables the IMDG to
automatically determine several Hadoop parameters, including the number of splits and
partitions. This simplifies application development and tuning.

Figure 3

© 2013 ScaleOut Software, Inc. 4

 www.scaleoutsoftware.com

• Because the IMDG hosts its own MapReduce engine, sorting can be made optional to accelerate
applications that do not need it. Many uses in real-time analytics do not need sorting.

• The MapReduce engine’s performance can be scaled linearly just by adding more servers to the
cluster. Because the IMDG automatically load-balances stored data, the analysis workload is
automatically redistributed to additional JVMs within the cluster.

Some applications may elect to input static data sets from HDFS (as shown in figure 2) to take
advantage of the fast MapReduce execution environment provided by the IMDG. In this case,
the IMDG should be installed on the same cluster of servers as HDFS to minimize network
overhead. Many uses of Hadoop MapReduce in real-time analytics do not need HDFS and are
not subjected to the complexity of installing one of the Hadoop distributions. These applications
can take advantage of the simplicity offered by the IMDG’s integrated MapReduce engine.

Real-Time Performance
To demonstrate the performance advantage of the IMDG’s integrated MapReduce engine,
measurements were made of the familiar Hadoop WordCount sample application. This
program was run both on the standard Apache Hadoop distribution and on an IMDG that
included a built-in Hadoop MapReduce execution engine. In this test, ScaleOut hServer™ from
ScaleOut Software was used as the IMDG and MapReduce engine.

ScaleOut hServer integrates a Hadoop MapReduce execution engine with its in-memory data
grid. Its open source Java API library includes several components: a Hadoop MapReduce
execution engine, which runs MapReduce jobs without using Hadoop job trackers or task
trackers, and input/output formats to pass data between the IMDG and a MapReduce
application, allowing the application to use the IMDG as a data source and/or result storage.

The benchmark test was run on four Intel Core 2 Quad CPU servers configured with 16GB
memory. When running in the standard Apache Hadoop distribution, the application input data
from HDFS; when running on ScaleOut hServer, it input data from the IMDG. Two tests were
run with different data set sizes (650MB and 3.8GB), and ScaleOut hServer demonstrated a 21X
performance gain on both, as shown in figure 4 below.

0 50 100 150 200 250

65
0

3,
82

2

Seconds to Complete

Da
ta

se
t S

ize
 (M

B)

Hadoop WordCount TestIMDG

Standard Hadoop

Figure 4

© 2013 ScaleOut Software, Inc. 5

 www.scaleoutsoftware.com

Beyond just providing a significant speed reduction in analysis time, the IMDG also allows the
input data set to be updated while the MapReduce analysis is in progress. Using the standard
Hadoop MapReduce distribution, live updates are not possible since data in HDFS can only be
appended and not updated.

Beyond Live Data Analysis
We have seen how an IMDG can enable Hadoop MapReduce to analyze live, operational data.
IMDGs also can provide significant advantages for analyzing static data sets. Here are some
additional ways an IMDG can be employed to accelerate Hadoop MapReduce applications and
simplify code development.

Stream Data in from HDFS
By using alternative input formats, IMDG-based
MapReduce applications can be connected to
HDFS or other data sources and input data sets
for processing by the MapReduce engine. (See
figure 5.) Likewise, output from MapReduce
applications can be sent directly to HDFS or
other storage systems instead of to the IMDG.

As data streams in from HDFS, it is fed to the
mappers, processed, and then output as an
intermediate data set which is shuffled and then
sent to the reducers. Some IMDGs (such as
ScaleOut hServer) can store this intermediate
data set within the IMDG to minimize data motion. In this case, as long as this intermediate data
set fits within the IMDG's memory, the IMDG’s MapReduce engine can process very large data
sets that otherwise would not fit within the IMDG.

HDFS Distributed Cache
To decrease the access time for reading data
into Hadoop from HDFS, the input data set
can be cached within the IMDG’s memory-
based storage. Some IMDGs provide a
distributed caching feature that speeds access
times by capturing data from HDFS or other
data sources during MapReduce processing.
This feature is intended for use with data sets
which fit within the memory of the IMDG.

Here's how it works. Using a simple change to
the Hadoop program, a special input format

Figure 5

Figure 6

© 2013 ScaleOut Software, Inc. 6

 www.scaleoutsoftware.com

"wraps" the application’s input format and intercepts key/value pairs input by its record reader.
This wrapper automatically stores the key/value pairs in the IMDG while forwarding them to
the application’s original record reader. On subsequent MapReduce runs, the IMDG verifies that
the HDFS data set has not changed and then supplies key/value pairs to the mappers directly
from the IMDG. Figure 6 shows how this wrapper is used.

Rapid Code Development
Development of Hadoop MapReduce code can be time consuming and error prone. Just the
management of the Hadoop software stack is challenging, not to mention lengthy execution
times during debugging. Using an IMDG with an integrated Hadoop MapReduce engine can
simplify development and shorten the time required to create a tested application. This
approach avoids the need to install and configure the standard Hadoop distribution just to
develop and test a MapReduce application. It also dramatically shortens execution times,
especially if the input data set is loaded into the IMDG. This means that you can rapidly iterate
on your MapReduce code until you're getting the results you expect before taking your code
into production.

Fast Iterative Runs
Using an IMDG also enables rapid, iterative "what-if" analyses of static data held in the grid. This
can be useful in applications, such as financial or process modeling, which require running
multiple runs on the same data set. For example, fast MapReduce execution times enable stock
trading strategies to be repeatedly tested and honed by multiple simulations across price
histories held in memory. Likewise, e-commerce recommendation engines can be developed
and tested in a fraction of the time required by standard Hadoop.

Summary
Using an IMDG with an integrated Hadoop MapReduce engine opens the door to real-time
analytics on live, operational data. By storing data in memory, eliminating scheduling overhead,
and reducing data motion, an IMDG can dramatically shorten analysis time from minutes to
seconds, demonstrating a 20x speedup in benchmark tests. And when the data sets get bigger,
the performance of the IMDG’s Hadoop MapReduce engine automatically scales as servers are
added to the cluster. This enables Hadoop MapReduce to be employed in operational systems
which manage fast-changing data and need to quickly identify patterns and trends, even as the
data changes.

The IMDG’s integrated MapReduce engine also eliminates the need to install, configure, and
manage a full Hadoop distribution. Developers can write and run standard Hadoop MapReduce
applications in Java, and these applications can be executed stand-alone by the execution engine.
This enables Hadoop skill sets to be easily transferred to real-time analytics, while making full
use of existing investments in infrastructure for managing fast-changing data. Many applications
in e-commerce, financial services, logistics, and other areas now can benefit from the power of
real-time analytics by leveraging the widespread expertise focused on Hadoop MapReduce.

© 2013 ScaleOut Software, Inc. 7

 www.scaleoutsoftware.com

About the Authors
David L. Brinker is the Chief Operating Officer of ScaleOut Software, Inc. Dave has over 25
years of software industry experience in a variety of operational, financial, and executive roles in
both public and private companies. Prior to joining ScaleOut Software, Dave was
CEO/Chairman at Webridge, Inc., a pioneer in secure extranets. As an early employee of
Mentor Graphics, he launched Asian operations and grew Mentor's Pacific business while
stationed in the Japan headquarters. Near the end of his twelve years at Mentor he managed the
worldwide field organization. In addition to raising capital and selling two private businesses,
Dave holds an Oregon CPA Certificate and spent his early years at KPMG and Price
Waterhouse Coopers.

Dr. William L. Bain is Founder and CEO of ScaleOut Software, Inc. Bill has a Ph.D. in
electrical engineering/parallel computing from Rice University, and he has worked at Bell Labs
research, Intel, and Microsoft. Bill founded and ran three start-up companies prior to joining
Microsoft. In the most recent company (Valence Research), he developed a distributed Web
load-balancing software solution that was acquired by Microsoft and is now called Network
Load Balancing within the Windows Server operating system. Dr. Bain holds several patents in
computer architecture and distributed computing. As a member of the Seattle-based Alliance of
Angels, Dr. Bain is actively involved in entrepreneurship and the angel community.

© 2013 ScaleOut Software, Inc. 8

