
SCALEOUT SOFTWARE

How to Scale the Storage
and Analysis of Business Data

Using a Distributed Data Grid
by Dr. William Bain, Ph.D, ScaleOut Software, Inc.

© 2011 ScaleOut Software. All Rights Reserved 2

www.scaleoutsoftware.com

A hallmark of the Information Age is the
incredible amount of business data

that companies have to store and analyze.
The ability to efficiently search data for
important patterns can provide an essential
competitive edge.

For example, an e-commerce Web site needs to be able to monitor online shopping carts
to see which products are selling quickly. A financial services company needs to hone
its equity trading strategy as it optimizes its response to fast-changing market conditions.
Businesses that face challenges like these have turned to distributed data grids (also called
distributed caches) to scale their ability to manage fast-changing data and comb through
data to identify patterns and trends requiring a timely response.

Distributed data grids offer two key advantages. First, they store data in memory instead
of on disk for fast access, and, second, they run seamlessly across a farm of servers to scale
performance. But perhaps best of all, they provide a fast, easy to use platform for running
“what if” analyses on the data they store. By breaking the sequential bottleneck, they can
take performance to a level that stand-alone database servers cannot match.

Software architects and developers often say the following. “OK, I see the advantages, but
how do I incorporate a distributed data grid into my data storage architecture, and how
could it help me to analyze my data?”

Here are three simple steps for building a fast, scalable data storage and analysis solution
using a distributed data grid.

1. Store fast-changing business data directly in a distributed data
grid instead of a database server.

Distributed data grids are designed to plug directly into the business logic of today’s enter-
prise applications and services. By storing data as collections of objects instead of relational
database tables, they match the in-memory view of data already used by business logic. This
makes distributed data grids exceptionally easy to integrate into existing applications using
simple APIs, which are available for most modern languages, like C#, Java, and C++.

Because distributed data grids run on server farms, their storage capacity and throughput
scale just by adding more grid servers. When hosted on a large server farm or in the cloud,
a distributed data grid’s ability to store and quickly access large volumes of data can grow
well beyond that for a stand-alone database server.

© 2011 ScaleOut Software. All Rights Reserved 3

www.scaleoutsoftware.com
2. Integrate the distributed data grid with database servers as part

of an overall storage strategy.
Of course, distributed data grids are used to complement and not replace database serv-
ers, which are the authoritative repositories for transactional data and long-term storage.
For example, in an ecommerce Web site, a distributed data grid would hold shopping carts
to efficiently handle a large workload of online shopping traffic, while a backend database
server stores completed transactions, inventory, and customer records. The key to integrat-
ing a distributed data grid into an enterprise application’s overall storage strategy is to care-
fully separate application code used for business logic from other code used for data access.

Distributed data grids naturally fit into business logic, which usually manages data as ob-
jects. This code is also where rapid access to data is needed, and that’s where distributed
data grids provide the greatest benefit. In contrast, the data access layer typically focuses
on converting objects into a relational form (or vice versa) for storage in database servers.

Interestingly, a distributed data grid optionally can be integrated with a database server so
that it can automatically access data from the database server if it’s missing from the dis-
tributed data grid. This is very useful for certain types of data, such as product or customer
information, which is kept in the database server and just retrieved when needed by the
application. However, most types of fast-changing, business logic data can be kept solely in a
distributed data grid and never written out to a database server.

Subnet

Stand-alone
Server

Remote
ClientWeb / App Server Farm

Management
Console

Remote
Client

Grid
Server

Grid
Server

Grid
Server

Grid
Server

ScaleOut StateServer Distributed Data Grid

Remote
Client

Remote
Client

Remote
Client

Remote
Client

The distributed data grid would hold shopping carts to efficiently handle a large workload of online shopping
traffic, while a backend database server stores completed transactions, inventory, and customer records.

Dr. William L. Bain is founder and CEO of ScaleOut Software, Inc. Bill has a Ph.D. in electrical
engineering/parallel computing from Rice University, and he has worked at Bell Labs research,
Intel, and Microsoft. Bill founded and ran three start-up companies prior to joining Microsoft. In
the most recent company (Valence Research), he developed a distributed Web load-balancing
software solution that was acquired by Microsoft and is now called Network Load Balanc-
ing within the Windows Server operating system. Dr. Bain holds several patents in computer
architecture and distributed computing. As a member of the Seattle-based Alliance of Angels, Dr.
Bain is actively involved in entrepreneurship and the angel community.

© 2011 ScaleOut Software. All Rights Reserved 4

www.scaleoutsoftware.com

3. Analyze grid-based data using simple analysis codes and the
“map/reduce” programming pattern.

Once a collection of objects, such as a Web site’s shopping carts or a financial company’s
pool of stock histories, has been hosted in a distributed data grid, it’s important to be able
to scan all of this data for important patterns and trends. Over the last 25 years, research-
ers have developed a powerful, two-step method, now popularly called “map/reduce,” for
analyzing large volumes of data in parallel. In the first step, each object in the collection is
analyzed for an important pattern of interest by writing and running a simple algorithm that
just looks at one object at a time. This algorithm is run in parallel on all objects to quickly
analyze all of the data. Next, the results that were generated by running this algorithm are
combined to determine an overall result, which hopefully identifies an important trend.

For example, an e-commerce developer could write a simple code which analyzes each
shopping cart to rate which product categories are generating the most interest. This code
could be run on all shopping carts several times during the day (or perhaps after a market-
ing blitz on the Web site has been launched) to identify important shopping trends.

Distributed data grids offer an ideal platform for analyzing data using this “map/reduce” pro-
gramming pattern. Because they store data as memory-based objects, the analysis code is
very easy to write and debug as a simple “in-memory” code. Programmers do not need to
learn parallel programming techniques or understand how the grid works. Also, distributed
data grids provide the infrastructure needed to automatically run this analysis code on all
grid servers in parallel and then combine the results. The net result is that by using a distrib-
uted data grid, the application developer can easily and quickly harness the full scalability of
the grid to rapidly discover data patterns and trends that are vital to a company’s success.

As companies become ever more pressed to manage increasing data volumes and quickly
respond to changing market conditions, they are turning to distributed data grids to obtain
the “scalability” boost they need. As clouds become an integral part of enterprise infra-
structures, distributed data grids should further prove their value in harnessing the power
of scalable computing to provide an essential competitive edge.

Programmers do not need to learn parallel
programming techniques or understand how
the grid works.

